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PREFACE

The Verilog hardware description language (HDL) provides the ability to
describe digital and analog systems. This ability spans the range from
descriptions that express conceptual and architectural design to detailed
descriptions of implementations in gates and transistors. Verilog was
developed originally at Gateway Design Automation Corporation during the
mid-eighties. Tools to verify designs expressed in Verilog were implemented
at the same time and marketed. Now Verilog is an open standard of IEEE
with the number 1364. Verilog HDL is now used universally for digital
designs in ASIC, FPGA, microprocessor, DSP and many other kinds of
design-centers and is supported by most of the EDA companies. The
research and education that is conducted in many universities is also using
Verilog. This book introduces the Verilog hardware description language and
describes it in a comprehensive manner.

Verilog HDL was originally developed and specified with the intent of use
with a simulator. Semantics of the language had not been fully described
until now. In this book, each feature of the language is described using
semantic introduction, syntax and examples. Chapter 4 leads to the full
semantics of the language by providing definitions of terms, and explaining
data structures and algorithms.

The book is written with the approach that Verilog is not only a simulation
or synthesis language, or a formal method of describing design, but a
complete language addressing all of these aspects. This book covers many
aspects of Verilog HDL that are essential parts of any design process. It has
the view of original development, and also encompasses changes and
additions in subsequent revisions. The book starts with a tutorial
introduction in chapter 1, then explains the data types of Verilog HDL in
chapter 2. Today´s object-oriented world knows that the language-constructs
and data-types are equally important parts of a programming language.
Chapter 3 explains the three views of a design object: behavioral, RTL and
structural. Each view is then described in detail, including the semantic
introduction, example and syntax for each feature, in chapters 3, 5 and 6.

Verilog takes the divide and conquer approach to the language design by
separating various types of constructs using different syntax and semantics.
The syntax and semantics include features to describe design using the three
levels of abstractions, features for simulation control and debug, preprocessor
features, timing descriptions, programming language interface and
miscellaneous system tasks and functions.



System tasks and functions that are useful for non-design descriptions, such
as input-output, are described in chapters 8 and 10. The preprocessor enables
one to define text substitutions and to include files, which are defined in
chapter 9. The building of systems using all features is explained in chapter
11. Synthesis is an essential part of today´s design process, and Verilog HDL
usage for synthesis requires special language understanding. The
understanding needed is provided in chapters 11 to 13. Timing descriptions
form a separate class of features in Verilog and are described in chapter 15.
Chapter 17 describes how programming language interface (PLI) provides
access to Verilog data structures and simulation information via common
data definitions and routines. Standard Delay Format, which is discussed in
chapter 18, extends capabilities of timing descriptions of specific blocks in
Verilog, and is used in ASIC designs extensively. Chapter 19 enunciates the
analog extensions to Verilog in the form of Verilog-A and Verilog-MS.
Simulation speed is an important part of Verilog HDL usage, and a large part
of the design cycle is spent in design verification and simulation. Some
techniques to enhance this speed are discussed in chapter 20.

The book keeps the reader abreast of current developments in the Verilog
world, such as Verilog-A, cycle simulation, SDF, DCL and uses IEEE 1364
syntax.

I hope that this book will be useful to all of those who are new to Verilog
HDL, to those who want to learn additional facets, and to those who would
like a reference book during the development of a hardware design or
software tool with Verilog HDL. I wish for you to design and implement
some interesting designs of ASICs, FPGAs, microprocessors, caches,
memories, boards, systems and/or tools like simulators, synthesizers, timing
analyzers, formal verifiers with Verilog HDL, and to have a lot of fun doing
so.

-- Vivek Sagdeo
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1 INTRODUCTION TO VERILOG HDL

1.1 Language Motivation

1.1.1 Language Design

The complexity of hardware design has grown exponentially in the last decade. The
exponential growth is fueled by new advances in design technology as well as the
advances in fabrication technology. The usage of hardware description language to
model, simulate, synthesize, analyze, and test the design has been a cornerstone of
this rapid development. Verilog is the first hardware description language that was
designed to be the language of choice in this domain. It is designed to enable
descriptions of complex and large designs in a precise and succinct manner. It can
facilitate descriptions of advances in architectures of design such as pipelining, cache
management, branch predictions. A smooth top-down design flow is possible with
Verilog based designs. It is also designed to facilitate new ECAD technologies such
as synthesis and formal verification and simulation. It was designed to unify design
process (including behavioral, rtl, gates, stimulus, switches, user-interface, test-
benches, and unified interactive and batch modes). It is designed to leverage
advances in software development for hardware design.

1.1.2 Verilog World

Verilog HDL has been successfully applied in all the major accomplishments in the
field of digital design in the last decade. It is a language that is today IEEE standard
1364, is open and has activities under Open Verilog International umbrella, has
annual International Verilog Conference (IVC) and is used in a vast majority of
electronics and computer industry projects as well as research in academics in areas
such as formal verification and behavioral synthesis. It also has spawned an industry
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of CAD tool vendors and consulting/support experts creating a movement to
participate in the world of electronics today.

1.1.3 Accessory Specifications

Verilog's accessory specifications such as the Programming Language Interface and
the Standard Delay Format (SDF) enable a highly productive design management
environment. Verilog HDL is a powerful tool to add to the repertoire of anybody
involved with designing circuits in digital and now analog domains.

1.2 Tutorial Via Examples

In the following pages of Chapter 1, we will take examples of circuits and see their
Verilog descriptions. This will give us a quick tour of the hardware description
language which is explained fully in the following chapters along with the digital
design techniques developed with Verilog.

1.2.1 Counter Design

Traditionally a counter is designed with flip-flops and gates. The flip-flops in turn
are designed with gates. To test the counter we connect clock and reset signals.
Verilog retains the capability of describing structural level descriptions, as shown
below, and adds the register transfer level and the behavioral capabilities over
traditional methods of design. These abstraction capabilities can be seen in the
following models and in comparing the traditional methods versus the Verilog
approach.

Example 1-1 describes the gate-level description of a D edge-triggered flip-flop.
The schematics are shown in Example 1-3.

module d_edge_ff_gates(q, qBar, preset, clear, clock, d);
inout q, qBar;
input clock, d, preset, clear;

nand #1 nl (ol, preset, o4, o2),
n2 (o2, clear, clock, ol),
n3 (o3, clock, o2, o4),
n4 (o4, d, o3, clear),
n5 (q, preset, o2, qBar),
n6 (qBar, q, o3, clear);

endmodule

Example 1-1. A gate-level description of edge-sensitive d  flip-flop.

module counter(q, clock, preset, clear);
output [3:0] q;
input clock, preset, clear;
d_edge_ff_gates dffl(q[0], qBar0, preset, clear, clock, qBar0),
dff2(q[l], qBarl, preset, clear, qBar0, qBarl),
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dff3(q[2], qBar2, preset, clear, qBarl, qBar2),
dff4(q[3], qBar3, preset, clear, qBar2, qBar3);

// initial $monitor("Internal counter signals qb0=%d qbl=%d qb2=%d qb3=%d",
// qBar0, qBar1, qBar2, qBar3);
endmodule

Example 1-2. A 4-bit counter built using instances of d flip-flop defined in
Figure 1-1.

Example 1-3. Schematics for dff in 1-1.

Example 1-4. Schematic for counter in 1-2.
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The description in Example 1-1 begins with the word “module” and ends with the
word “endmodule”. The interface to the module is described in the same line as
module name “d_edge_ff_gates”. The direction of each port in the interface list is
described in the following lines beginning with the words like “inout” and “input”.
The “nand” statement has six instances of nand gates with names nl through n6.
The interface list on each line enclosed in parentheses. The first identifier describes
the output and the subsequent identifiers describe the inputs of each nand gate. Thus,
ol through o4 and q and qBar are outputs of the gates nl through n6; preset, clear,
clock and data are inputs along with ol-o4, q and qBar which are in the feedback
loop. The “#” symbol indicates delay on the gate which is a unit delay (1 unit) in this
case.

Example 1-2 builds a 4-bit counter built with d flip-flops defined in Example 1-1.
The flip-flop was built using predefined nand gate while the counter is built
hierarchically using a module defined earlier. Again, the definition of this block is
enclosed between the keywords “module” and “endmodule” and the interface list is
described at the top of the module. The four flip-flops are instantiated using the
name of the module “d_edge_ff_gates” followed by names (dffl-dff4) and the
connection list.

The definition of the counter output q specifies the 4-bit output by using [3:0]
expression. This indicates the size of this bit-vector of size 4 and indices from 3
down to 0. Verilog supports single-bit quantities or scalars and multi-bit or vectors.
Bits in Vectors are addressed using brackets, as in q[0] indicating bit 0 is vector q.

module counter_behav(q, clock, preset, clear);
output [3:0] q;
reg [3:0] q;
input clock, preset, clear;

always @(posedge clock)
begin

if( (preset = = 1) && (clear = = 1))
q =q + l;
else
if ((preset = = 0) && (clear = = 1))

q = 4'bllll;
else

q = 0;
end

endmodule

Example 1-5. Behavioral description of the same counter as in 1-2.

In the Example 1-5, the same counter is described at a higher level of abstraction,
known as behavioral level. Here there are no flip-flops or gates, but an always block,
that is sensitive to “posedge”, a positive or rising clock edge. Inside this block, we
see that the count increments by one (“q=q+l”) when preset and clear are inactive
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(both 1). The preset and clear actions are modeled in the next two statements
whereby q is set to 4’b1111 or 0 under right combinations for preset and clear values.

The always block executes as a loop with ‘@’ symbol indicating a wait on the
event described in the expression that follows; in this case the ‘posedge clock’ or
rising edge of clock. Another name used for such a loop is ‘process’. In a
synchronous system, several processes that execute based on clock-edges and resets
can describe the synchronous behavior fully.

module test_counter;
reg preset, clear, clock, data;
wire [3:0] q;
counter ci(q, clock, preset, clear);
counter_behav ci(q, clock, preset, clear);
initial
begin

clock = 0;
forever #50 clock = ~clock;

end

initial
begin

$monitor("time=%d preset=%d clear=%d clock=%d q[0]=%d q[l]=%d
q[2]=%dq[3]=%d",

$time, preset, clear, clock, q[0], q[l], q[2], q[3]);
preset = 0;
clear = 1;
#200

/* preset = 1;
clear = 0;

*/ #200
preset = 1;
clear = 1;
#200 ;
#200
data = 0;
#1600
$finish;

end
endmodule

Example 1-6. A test module for testing the two descriptions of counter and
their equivalence.

Here, in Example 1-6, a test-bench is built by instantiating the two modules and
with two initial blocks. The 'counter' module, with gate-level description, and
counter-behav, with behavioral description, are connected to the same inputs, and
their outputs are connected together. The first initial block generates clock. The
second initial block generates stimulus. It also monitors changes in inputs or outputs
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Example 1-7. Waveforms for the counter example.
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using $monitor system task. The waveforms are produced as shown in Example 1-7
in a simulation run, while the text output is shown in Example 1-8.

1.2.2 Factorial Generator

module factorial(n, fact);
nput [31:0] n;
utput[31:0]fact;
eg [31:0] fact;
eg factReady;
nteger i;
initial begin

factReady = 0;
fact = 0;
$monitor("time=%d number =%d factorial = %d", $time, n, fact);

end

always @n
begin

factReady = 0;

fact = 1;
for(i=l;i<=n;i=i+l)

fact = fact * i;
factReady = 1;

end
endmodule

module test;
reg[31:0]n;
wire [31:0] fact;
integer j;

reg nReady;
factorial f (n, fact);

initial
begin
#1 n =1;
for(j=l;j<=4;j=j+l)
begin

nReady = 0;

# l n = j ;
nReady = 1;

end
end

endmodule

Example 1-8. Factorial generation of a number.
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In Example 1-8, the factorial module generates the factorial of a number
algorithmically. This design module instantiated in a test module and the two
modules communicate via the ports n and fact. The module factorial contains an
'always' block that executes based on an event on n. The ‘for’ loop computes the
value of the factorial using the loop variable i and the limiting value n. The test
module contains an initial block that generates the stimulus for the factorial.
Numbers are generated in a for loop that has a delay of 1 unit for each number
generated. The factorial computation is zero-delay and the computation is completed
before the test block generates the next number. This example illustrates pure
behavioral modeling.

1.2.3 System Design with Processor, Memory, and Cache

In the next example, we see a hierarchical building of a system using module
definitions and instantiations.

module Processor(procRead, procWrite, procAddress, procData, procClock, reset);
output procRead, procWrite;
inout [`ADDR_SIZE-l:0]procAddress;
inout [`DATA_SIZE-l:0] procData;
input procClock;
input reset;
// processor description
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//
endmodule

module MainMemory(memRead, mem Write, memAddress, memData, memClock,reset);
input memRead, mem Write, memClock, reset;
input [`ADDR_SIZE-1:0] memAddress;
input [`DATA_SIZE-1:0] memData;
// memory description
//

endmodule
`endif

module Cache(procRead, procWrite, procAddress, procData,
memRead, mem Write, memAddress, memData, reset, clock);

input procRead, procWrite, reset, clock;
input [`ADDR_SIZE-l:0] procAddress;
output memRead, memWrite;
output [`ADDR_SIZE-1:0] memAddress;
inout [`DATA_SIZE-l:0] memData, procData;

wire [`DATA_SIZE-1:0] dataIn, outData, dataOut;
wire [`TAG_SIZE-1:0] tagOut;

tagCache tc(procAddress, tagOut, clock, write, procRead, reset);
validCache vc(procAddress, valid, clock, write, procRead, reset);
dataCache dc(procAddress, dataln, dataOut, clock, write, read);
comparator c(tagOut, procAddress[`ADDR_SIZE-l:`ADDR_SIZE-`TAG_SIZE],

match);
cacheControl cc(procRead, procWrite, match, valid, read, write, mem Write,

memRead, dataOutSel, dataInSel, clock, reset);
dataMux dmIn(procData, memData, dataInSel, dataIn);
dataMux dmOut(dataOut, memData, dataOutSel, outData);

endmodule

module System();
wire [`ADDR-SIZE-l:()] memAddress;
wire [`DATA_SIZE-l:0] memData;
wire [`ADDR_SIZE-l:0] procAddress;
wire [`DATA_SIZE-l:0] procData;
Processor p(procRead, procWrite, procAddress, procData, procClock,

eset);
MainMemory m(memRead, memWrite, memAddress, memData, memClock,

reset);
Cache c(procRead, procWrite, procAddress, procData,

memRead, memWrite, memAddress, memData, reset, clock);
endmodule

Example 1-9. A system model with microprocessor, ram, and cache
controller.
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In Example 1-9, three blocks in hardware, the processor, the memory and the
cache are modeled with their interfaces, in the three modules named Processor,
Memory and Cache. The module System instantiates all three blocks and connects
the signals to the modules, thereby creating the network. The data, address buses on
the processor side are procData and procAddr and on the memory side are memData
and memAddr. The cache block connects the two with its mapping function for
address and data on either side. This is modeled in the module cache upto one level
of hierarchy. Full details of the subsequent levels are described in Example 11-5.
This is an example of structural style modeling in Verilog using module definitions
and instantiations, while functionality is explained in Example 11-5.

1.2.4 Cache System - Behavioral Model

// 2 K Cache

`define CACHE-SIZE 2*1024
// This is limited by maximum size in this simulator
`define MEM_SIZE 128*1024

`define ADDR_SIZE 17
`define TAG_SIZE 6
//define states
`define IDLE 0
`define READ 1
`define WRITE 2
`define READ_MISS 3
`define READ_CACHE 4
`define WRITE_MISS 5
`define WRITE_CACHE 6

`define DATA_SIZE 64
`define CP 100
`define CACHE_DRV 1
`define NONCACHE_DRV 0

module cache(reset, addr, data, read, write, clock, buscntrl, done);
input [`ADDR_SIZE-1:0] addr;
inout [`DATA_SIZE-1:0] data;
input read, write, clock, reset;
input buscntrl;
output done; // indicates completion of cache operation

reg [`TAG_SIZE-1:0] tagCache[`CACHE_SIZE-l:0];
reg [`ADDR_SIZE-`TAG_SIZE-1:0] dataCache[`CACHE_SIZE-l:0];
reg [`CACHE_SIZE-l:0] validCache;
reg match;
reg [7:0] state;
integer i;
integer index, tag;
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reg [`DATA_SIZE-l:0] MainMemory[0:`MEM_SIZE-1];
reg [`DATA_SIZE-l:0] dataOut;

reg done;

assign data = (buscntrl== `CACHE_DRV) ? dataOut: 'bz;

function get_caching_scheme;
input [`ADDR_SIZE-1:0] addr;
begin

get_caching_scheme = 1;
end
endfunction

initial
for (i=0; i <`CACHE_SIZE; i=i+l)

validCache[i] = 0;

always @(read or write)
begin
done = 0;

if(read)
state = ̀ READ;

else
if (write)

state = ̀ WRITE;

while (state != ̀ IDLE)
begin

@(posedge clock)
if (reset)
begin

// Clear all validCache bits
for (i=0; i <`CACHE_SIZE; i=i+l)

validCache[index] = 0;
end
else
begin

index = addr[`ADDR_SIZE-`TAG_SIZE-1:0];
tag = addr[` ADDR_SIZE-1: ̀ ADDR_SIZE-`TAG_SIZE];
if ((validCache[index]) &&(tagCache[index] == tag))

match = 1;
else

match = 0;

case(state)
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`READ :
begin
// Match Found in cache

if (match)
dataOut = dataCache[index];

else
//a few possibilities here
// read data from memory and also

// copy in cache or not copy in cache; determining
// this is part of another policy; obtain this info
// from another task; LRU algotihm means bring this in
// OK

if (get_caching_scheme(addr) == 0)
state = ̀ READ_MISS;

else
state = ̀ READ_CACHE;

end

`READ_MISS:
begin

dataOut = MainMemory[addr];
done= 1;
state = `IDLE;

end

`READ_CACHE:
begin

dataOut = MainMemory[addr];
dataCache[index] = data;
tagCache[index] = tag;
validCache[index] = 1;
state = `IDLE;

end

`WRITE:
begin

if (get_caching_scheme(addr) == 0)
state = `WRITE_MISS;

else
state = `WRITE_CACHE;

end

`WRITE_MISS:
begin

MainMemory[addr] = data;
if (match)
// Do not maintain this location in cache any more
validCache[index] = 0;
state = `IDLE;

end
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`WRITE_CACHE:
begin

MainMemory[addr] = data;
validCache[index] = 1;
dataCache[index] = data;
tagCache[index] = tag;
state = ̀  IDLE;

end
endcase

end
end

end
endmodule
`endif

Example 1-10. Behavioral description of a cache controller with write-
through scheme.

In the Example 1-10, a cache system is modeled whereby the state machine is
mapped into a case statement inside an always block. The IDLE state is when neither
read nor write operation is in progress. READ, READ_MISS, and READ_CACHE
complete the read operation for this cache. The states of WRITE, WRITE_MISS,
WRITE_CACHE model the write operation. Several details of timing and structure
are abstracted out. For example, the memory read and write are directly modeled as
assignments with no delays or control circuitry. This level of modeling is beneficial
for two reasons. Checking the algorithms at the higher level and b. For determining
efficacy of a method early in the design cycle. In Examples 11-3 to 11-5, we show
different cache models that started out with this model and arrive at more
sophisticated caching schemes and also implementations with more structural
details.

This model begins with a set of “`define” statements that defines text-substitution
macros for the Verilog preprocessor. This helps in separating out constants in one
place that can then be varied if desired. Notice that these are done outside the module
and will be applicable throughout the file for all modules in it. The module cache has
a port-interface and certain reg and memory declarations are done in the beginning.
This is followed by initial block defining initialization or reset operation. Then the
always block as described in the previous paragraph is added to complete the model.

1.3 Overview of Verilog HDL

1.3.1 Correspondence To Digital Hardware

A hardware description language describes hardware using a language. For every
piece of hardware there exists a corresponding language description (and vice versa).
The correspondence is explained below in terms of building blocks in hardware and
the constructs in the language. The building blocks in a hardware design is
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dependent on the methodology being used. A design process consists of top-down
and bottom up and a mixture of these two styles. Verilog is a powerful tool in the
top-down design methodology and is capable of supporting the bottom up style and
consequently the mixed approach as well.
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1.3.2 Typical Design Flow with Verilog

Figure 1-1 illustrates a typical design flow with Verilog. A top-down design starts
with a behavioral description and is finally sent to the fab after complete placement,
layout and final verification as shown in this diagram.

1. Write a high level behavioral description of the planned design. This step starts
with concepts and ends up with a high level description in the Verilog language.
This description can have various levels of detail and essentially has
architectural elements and algorithmic elements. This may be used with
behavioral synthesis for some specialized parts but in general will be simulated
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for verifying the parameters, algorithms and architecture. Example here includes
the cache controller models for write-through and write-back schemes
(Example 11-3 to 11-5 ). Some level of tests are generated at this point.

2. Next we perform stepwise refinement to the RTL level. This is again simulated
and verified for functional correctness. We also check for the RTL synthesis
subset during this process. Here we first use the tests developed in step 1 and add
tests for the details added at this level. For example, for a cache controller, all
communicating wires and registers are modeled here as opposed to higher level
models of the blocks in step 1. Thus, correctness of all signals at the (logic)
synthesizable blocks are tested in this step.

3. Synthesize the HDL description with the synthesizer. In a typical Synthesizer
like Synopsys, this step is divided into two parts—HDL Compilation and the
Design Compilation. Synthesizer performs architectural optimizations, then
creates an internal representation of the design. Use the Synthesis Design
Compiler to produce an optimized gate-level description in the target ASIC
library. You can optimize the generated circuits to meet the timing and area
constraints wanted. This optimization step must follow the translation to
produce an efficient design.

4. The output of a synthesizer is a gate-level Verilog description. This netlist-style
description uses ASIC components as the leaf-level cells of the design. The gate-
level description has the same port and module definitions as the original high-
level Verilog description 1. The gate-level Verilog description from step 3 is
now passed through the Verilog simulator. You can use the original Verilog
simulation drivers from steps 1 and 2 because module and port definitions are
preserved through the translation and optimization processes. Compare the
output of the gate-level simulation (step 4) against the output of the original
Verilog description simulation (step 3) to verify that the implementation is
correct.

5. The synthesis tools can be used at behavioral and at the RTL level. The RTL
level is synthesized using techniques that are commonly known as logic
synthesis. In this book, the major components of this flow will be discussed. The
various representations in Verilog like behavioral, RTL and structural occur at
different places in this design cycle and will be discussed fully. Simulation
aspects will be discussed for each of those and as a whole as well with the
semantic model adding to the depth of this understanding. Synthesis with
Verilog will be discussed in various sections and then in Chapter 12. Timing
descriptions that are especially important for post-layout verification will be
discussed in Chapter 13 on specify blocks,

The entire chip design is a combination of bottom up and top-down design
methodologies. In handling the whole design description one deals with top-down
module hierarchy; and also multiple views/descriptions of the same module. Ideally
we have three views: Architectural, rtl, gates/switch-level. Comparisons of these
descriptions provides one of the sources of power in HDL usage. Some observations
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of these: Same hierarchical model exists upto certain levels of interest; then the
details appear or disappear.

1.3.3 List of Keywords

Verilog defines a set of words to have special meaning. These words are reserved and
cannot be used as identifiers or labels in a Verilog model. The type of a statement is
identified by the first word in the statement that is a keyword. Examples of these will
be ‘always’, ‘and’, ‘assign’, etc. When a statement begins with the word always,
there is a special meaning of an always loop attached to that statement. The set of
keywords defines the scope or the contents of the language. In other words, the set of
features in Verilog can be characterized by the set of keywords as defined below.

1.3.4 Comment Syntax

comment
::=short_comment
| long_comment
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short_comment
::= // comment_text END-OF-LINE

long_comment
::= /* comment_text */

comment_text
::= {Any_ASCII_character}

1.4 Syntax Conventions

Verilog syntax is precisely defined using BNF(Backus Naur Form). The BNF is
described using the following symbols and syntax conventions. As an example, see
the definition of comment above in section 1.3.4. The conventions are also known as
formal syntax definition conventions.

In this example, we define a non-terminal ‘comment’. The non-terminal name
being defined is included in the angle brackets. The definition begins with the non-
terminal ‘comment’ followed by ‘::=’ or the ‘is defined as’ symbol. On the right
hand side of the ‘::=’ symbol, two alternative definitions ‘short-comment and long-
comment are stated. The alternatives are separated by the ‘||=’ symbol. The
short_comment is defined to begin with the characters ‘//’ followed by comment_text
and ends with the END_OF_LINE character. The long_comment consists of a
comment_text enclosed within ‘/*’ and ‘*/’. The comment_text in turn is any
sequence of ASCII characters. This is indicated by the repetition symbol ‘*’ preceded
by the lexical token ASCII_CHARACTER. The lexical tokens typically consists of a
single character, also known as literal, like ‘A’ or ‘0’ or special non-printable
characters like the END_OF_LINE’ character. These are defined in the Appendix A
along with the complete syntax definition of entire Verilog HDL. In the following
chapters, we define syntax using the notation defined here for each construct in the
language, along with the semantics and usage with examples.

The lexical conventions in defining the tokens and the conventions in identifying
the tokens to be either terminals or non-terminals are as follows:

Space characters are ignored during the lexical analysis but form
token-separators except when present within double quotes.

Identifiers are formed by combination of alphanumeric characters lead
by alphabet. Non-alphanumeric characters may be included in an
identifier name using leading ‘\’ and are called escaped identifiers.
SDF identifiers can contain \ followed by special characters.

Separators of tokens are all-characters that are non-alphanumeric with
the exception of escaped identifiers.

All the other rules of writing and reading Verilog HDL code are included in the
syntax definitions that follow discussion of every Verilog HDL feature described in
the book and are summarized in appendix A and B.
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1.5 Exercises

1.

2.

3.

4.

5.

Give three advantages behind using an HDL for hardware design.
Give three applications or technologies facilitated by Verilog HDL.

In the example m555 of timer, rewrite using:

1. gates
2. initial and forever
3. initial and while loops
4. assign statement

Compare the two ways of modeling counter discussed in Chapter 1.

Identify the following constructs(one instance of each) from 8085-based
example:

event declarations
event usage
posedge/negedge
disable
task
function
nmos

Rewrite the behavioral model of the counter with the following changes:

a. make clock period 200 units.

b. the counter counts to 32 numbers (0 through 31) Try making the same
changes in the gate-level model and see the advantages of the behavioral

modeling.
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6. In the simulation of the Example 1-6, the output goes to x in between steady
state values. The following lines show one such case, from time 453 to 457:

time= 450 preset=l clear=l clock=l q[0]=x q[l]=x q[2]=xq[3]=x
time= 453 preset=l clear=l clock=l q[0]=0 q[l]=x q[2]=xq[3]=x
time= 455 preset=l clear=l clock=l q[0]=0 q[l]=0 q[2]=xq[3]=x
time= 457 preset=l clear=l clock=l q[0]=0 q[l]=0 q[2]=0q[3]=x

Explain the occurrence. Simulate the two design separately by commenting out
one instance at a time from the test_counter module.



2 DATA TYPES IN VERILOG

2.1 Overview

Verilog supports only predefined data types. These include bits, bit-vectors,
memories, integers, reals, events, and strength types. These define the domain of
description in Verilog. Verilog deals mainly in the domain of bits and bytes while
describing the circuits. The real type is useful for delays and time and is also useful
in higher level modeling such as stochastic analysis and digital signal processing
algorithms. The hardware types include net and reg types. This, in general, can be
seen as wires and registers. The nets are further declared to be of different types like
tri-stated or non-tri-stated and whether the resolution of multiple connections results
in anding, oring or uses prior value. The details of these can be seen in the following
sections.

2.2 Value Systems

The data types have ramifications on the scope of the description. The value-systems
define the kinds of values defined in the language and entail the operations supported
on them. These also have corresponding constant (numbers or literals) definitions.
The various values in Verilog are:

bits and integers(32 bits), time (64 bits)—bit-vectors and integers can be freely
intermixed. Integers are defined to be 32 bits. Time values are 64 bits. The bits
actually are of two types as below.

4-state values (0,1,x,z); also known as logic values

128-state types (4 states and 64 strengths (8 '0' and 8 '1' strengths)

floating point types (real numbers)



character strings

delay values – These are single, double, triplet or n-tuple indicating rise,
fall any other transition delay

transition values – (01) - change from 0 to 1. These may in user-define
primitives or specify blocks

Boolean/conditional values – true /false OR 0/1

units (only for timescale) – femtoseconds (Fs) to seconds (s)

2.3 Data Declarations

2.3.1 Introduction

Different data types in Verilog are declared by data declaration statement. These
statements occur in module definitions before usage and some of these can be
declared within named sequential blocks. In addition to the value-types that may
distinguish different types of data, the hardware characteristics of wires versus
registers also are distinguished as net versus reg declarations in Verilog. The term
driving is used in hardware descriptions to describe how a value is assigned to a date
element. Nets and regs are two main types of data elements in Verilog. Nets are
continuously driven from continuous assignments or from structural elements such as
module ports, gates, transistors or user defined primitives. Regs are driven strictly
from behavioral blocks. Nets are typically implemented as wires in hardware and
regs may either be wires, or temporaries or flip-flops (registers).

The different data types in Verilog are declared as one of the following types:

parameter These are constant valued expressions resolved
after compilation and allow modules to be
parametrized.

input This and the next two types define the direction
output and size of a port.
inout

net This is a type of connection or wire in hardware
with different resolutions.

reg This is an abstract type that is like a register and
is driven behaviorally.

time This contains time quantities like delays and
simulation time.

integer This is an integer values type.

real This is a floating point or real valued type.

event This indicates a flag that can trigger activity.
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These can all be declared at the module level. The other descriptions in Verilog
with scope-creation capabilities include tasks, functions and named begin-end
blocks.. The non-module scopes are all behavioral scopes. Nets are non-behaviorally
driven and thus can not be declared in the other scopes. All other types can be
present in tasks and begin-end blocks Each one of these is explained in sections 2.4
through 2.12.

2.3.2 Examples

input i1, i2;
reg [63:0] data;
time simtime;

Example 2-1. Data declarations.

The first line in Example 1-2 is an input declaration line, the second is a 64-bit
reg declaration for data. The last line in this example is a time declaration for the
variable named simtime.

2.3.3 Syntax

data_declarations ::= parameter_declaration
||= input_declaration
||= output_declaration
||= inout_declaration
||= net_declaration
||= reg_declaration
||= time_declaration
||= integer_declaration
||= real_declaration
||= event_declaration

2.4 Reg Declaration

2.4.1 Introduction

Reg declarations are done for all signals that are driven from the behavioral
descriptions Regs retain a given value until they are assigned a new value in the
sequential description (initial or always blocks). Reg types are more abstract than net
types but are closely tied to concepts of registers (with storage) and can be realized in
hardware as such. They can also be realized as wires or may be temporaries with no
hardware mapping depending on their usage within a behavioral block.
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2.4.2 Examples

reg rl, r2;
reg [63:0] data_a, data_b, data_c;

Example 2-2. Reg declarations.

2.4.3 Syntax

reg_declaration
::= reg [range] list_of_register_ identifiers;

list_of_ register_ identifiers ::= register _ identifier , { register _ identifier }

2.5 Net Declaration

2.5.1 Introduction

The net is a set of data types in a Verilog description that represents the physical
wires in a circuit. A net connects gate-level instantiations, module instantiations and
continuous assignments. The Verilog language allows you to read a value from a net
from within behavioral descriptions, but you cannot assign a value to a net within the
behavioral descriptions. (An always block is a specific type of begin...end block). A
net does not store its value. It must be driven in one of two ways:

By connecting the net to the output of a gate or module.
By assigning a value to the net in a continuous assignment.

Different net-types defined in Verilog are described below and the tables in
Figure 2-1 summarize their functionality. Resolution is a rule for resolving values
with multiple drivers the following is also explained in table on next page.

wire a net with 0,1,x values and resolution based on equality
wand a net with 0,1,x values and resolution of wired and

wor a net with 0,1,x values and resolution of wired or

tri a net with values of 0,1,x,z and resolution of tri-state bus

tri0 a net with values of 0,1,x,z and resolution of tri-state bus and a
default value of 0 when no driving value

tri1 a net with values of 0,1,x,z and resolution of tri-state bus and a
default value of 1 when no driving value

trior a net with values of 0,1,x,z and resolution of tri-state for z-
non-z values using ‘or’ function of non-z values

triand a net with values of 0,1,x,z and resolution of tri-state for z-
non-z value using ‘and’ function for non-z values

trireg a net with values of 0,1,z,x and tri-state resolution together
with charge storage (previous value used in resolving new
value)

supply0, supply1 (gnd and vdd)
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wire

The wire data-type defines a type that is a simple connection between two places
where it is used. Multiple drivers resolve using tri-state function during simulation
but synthesis creates non-tri-states for wire types. In the Example 2-3, 2-wire
declarations are made. The first declares a scalar wire w. The second declares a
vector wire w2 with 3 bits. Its most significant bit (msb) has an index of 2 and its
least significant bit (Isb) has an index of 0.

wire w1;
wire [2:0] w2;

Example 2-3. Wire declarations.

wand

The wand (wired-and) data type is a specific type of wire that uses the and function
to find the resulting value when multiple drivers are present. In Example 2-4, two
variables drive the variable c. The value of out is determined by the logical and of
il and i2.

module wand_test(out, i1, i2);
input il, i2;
output out;
wand out;
assign out = il;
assign out = i2;
endmodule

Example 2-4. Wand (wired-AND) declarations and usage.



You can assign a delay value in a wand declaration, and you can use the Verilog
keywords scalared and vectored for simulation.

wor

The wor (wired-OR) data type is a specific type of wire. In Example 2-5, two
variables drive the variable c. The value of out is determined by the logical OR of in1
and in2.

module wor_test(il, i2, out);
input il, i2;
output out;
wor out;
assign out = in1;
assign out = in2;
endmodule

Example 2-5. wor (wired-OR) declarations and usage.

tri

The tri (three-state) data type is a specific type of wire where the resolution of
multiple drivers is done using the rules of tri-state bus. All variables that drive the tri
must have a value of Z (high-impedance), except one. This single variable
determines the value of the tri.

In Example 2-6, three variables drive the variable out. They are set in another
module such that only one driver is active at a time.

module tri_test (out, select, a, b, c);
input [1:0] select, a, b, c;
output out;
tri out;

assign out = a; //make the tri connection
assign out = b;
assign out = c;

endmodule

module abc(a, b, c, select)
output a, b, c;
input select;
always @ ( select ) begin
a = 1'bz; //set all variables to Z
b = 1'bz;
c = 1'bz;
case ( select ) //set only one variable to non-Z
2'b00:a=1'b1;
2'b01:b=l'b0;
2'bl0:c=l'bl;
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endcase
end

endmodule

Example 2-6. Tri (Three-State) declarations and usage.

The drivers may be gate outputs as in the example below.
module tri_test (out, select, a, b, c);

input [1:0] select, a, b, c;
output out;
tri out;

nand(out, a1,a2); //make the tri connectio
nand(out, bl, b2)
nand( out, cl, c2, c3);

endmodule

Example 2-7. Nets of tri types declared and used for multiple drivers with
tri-state resolution.

supply0 / supply1

The supply0 and supply1 data types define wires tied to logic 0 (ground) and logic 1
(power or vss/vdd). Using supply0 and supply1 is the same as declaring a wire and
assigning a 0 or a 1 to it. In Example 2-7 power is tied to power supply (always
logic 1 – overriding strength) and gnd is tied to ground (always logic 0 – overriding
strength).

supply0 gnd;
supply1 power;

Example 2-8.  supply0 and supply1 constructs.

trireg

The trireg net is like a tri wire but has a capacitive nature and stores its last value
when all drivers are tri-stated. Thus, the trireg net will always have a value of 0 or 1
or x but not z. The capacitance on the trireg is specified by a size that is either large,
medium or small with the default value of medium when unspecified. For a Verilog
model as follows, we obtain the resulting value on wire trg of trireg type when the
transistor driving it is in off state.

module m;
reg c0, c1, i1, i2;
tri d0, d1, d2;
trireg d;
and(d0, il, i2);
nmos nl (d1, d0, c0),  n2(d, d1, c1);
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initial
begin

$monitor(“time = %d d = %d c0=%d c1=%d d0=%d d1=%d
i1=%d i2=%d”, $time, d, c0, c1, d0, d1, i1, i2);

#1
i1 = 1;
i2 = l;
c0 = l;
c1 = 1;
#5
c0 = 0;

end

endmodule

C1>.
time =       0 d = x c0=x c1=x d0=x d1=x i1=x i2=x
time = 1 d = 1 c1=1 c1=1 d0=1 d1=1 i1=1 i2=1
time = 6d = 1 c0=0 c1=1 d0=1 d1=z i1=1 i2=1

Example 2-9. Trireg net and the switch-level modeling example.

In this example, if the trireg is replaced with a tri, then the value of d at time 6
units will be ‘z’.

2.5.2 Syntax

net_declaration ::= NETTYPE [expandrange] [delay] list_of_net_ identifiers;
| trireg [charge_strength] [expandrange] [delay]

list_of_ net_ identifiers; | NETTYPE [drive_strength] [expandrange] [delay]
list_of_net_decl_assignments ;

list_of_net_ identifiers ::= net_ identifier, { net_ identifier }
NETTYPE ::= : wire | tri | tri1 | supply0 | wand | triand | tri0 | supply1 | wor | trior |
trireg

expandrange
::= range
| scalared range
| vectored range

charge_strength
::= ( small )
| (medium)
| (large)

In the above syntax definitions expandrange optionally defines vectors and is
explained in section 2.7.2, delay expressions are defined in section 2.12,
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drive_strength specifications are given while giving transistor-level models and are
explained in Chapter 17.

2.5.3 Examples

wire w1, w2;

tri [7:0] t1, t2;

trireg large trgl, trg2;

triand [63:0] #(10:5) trnd1;

Example 2-10. Net type declarations.

In Example 2-10, the first line with the keyword ‘wire’ declares w1 and w2 to be
single-bit or scalar wires. The second line declares 8-bit-vector-wires of type tri with
names of t1 and t2. The trireg (a capacitive net) with the size large are declared on
the next line with names of trg1 and trg2. The 64-bit triand type net with minimum
and typical delays is declared on the line above.

2.6 Port Types

2.6.1 Introduction

You must explicitly declare the direction (whether input, output, or bidirectional) of
each port that appears in the port list of a port definition. Three kinds of ports are
defined in Verilog—input, output, inout. The ports must be either nets or regs. The
only place where a reg can occur is output port. Constants and expressions are
allowed in port declarations.

input

All input ports of a module are declared with an input statement. An input is a type
of wire and is governed by the syntax of wire. You can use a range specification to
declare an input that is a vector of signals, as for input b in the following example.
The input statements can appear in any order in the description but must be declared
before they are used. For example:

input a;

input [2:0] b;

output

All output ports of a module are declared with an output statement. Unless otherwise
defined by a reg, wand, wor, or tri declaration, an output is a type of wire and is
governed by the syntax of wire. An output statement can appear in any order in the
description, but you must declare it before you use it. You can use a range
specification to declare an output that is a vector of signals. If you use a reg
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declaration for an output, the reg must have the same range as the vector of signals.
For example:

output a;

output [2:0]b;

reg [2:0] b;

inout

You can declare bidirectional ports with the inout statement. An inout is a type of
wire and is governed by the syntax of wire. You must declare an inout before you use
it. For example:

inout a;
inout [2:0]b;

2.6.2 Examples

module fullAdder(cOut, sum, aIn, bIn, cIn);
input aIn, bIn, cIn;
output cOut, sum;
wire aIn, bIn, cin;
reg cOut, sum;

endmodule

Example 2-11. Port type declarations.

2.6.3 Syntax

list_of_ports
::= ( port {,port })

port
::= [port_expression]
| . port_identifier ( [port_expression] )

port_expression
::= port_reference
| { port_reference ,port_reference }

port_reference
::= port_identifier
| port_identifier[ constant_expression ]
| port_identifier [ msb_constant_expression :lsb_constant_expression ]
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2.7 Aggregates – 1 and 2 Dimensional Arrays (Vectors and Memories)

2.7.1 Introduction

Only 1- and 2-dimensional arrays are supported in Verilog. One-dimensional arrays
are called bit-vectors and may be nets or regs. The 2-dimensional aggregates are
called memories and are reg kind. You can define an optional range for all the data
types presented in this chapter. The range provides a means for creating a bit-vector.
The syntax for a range specification is [msb : lsb]. Expressions for msb (most
significant bit) and lsb (least significant bit) must be non-negative constant-valued
expressions. Constant-valued expressions are composed only of constants, Verilog
parameters, and operators. There is no maximum size for the length of a bit-vector
and this is limited only by a particular implementation of simulation, synthesis, or
other tools used with the Verilog source.

2.7.2 Examples

reg [31:0] data;
reg [23:0] addr;
wire [63:0] system_bus;

Example 2-12. Aggregate declarations.

In the first line above, data is a bit-vector reg of 32 bits width, declared with a
range specification of 31:0 with the most significant bit taking the index of 31 and
the least significant bit that of 0. The third line is a wire declaration of 64 bits width
and the index of bits ranging from 63 to 0. Some examples are:

wire vectored [31:0] bus1;
tri scalared [63:0] bus2;

Example 2-13. Vectored and scalared bit-vector net declarations

In the above example, the first line indicates that the vector bus1 is used as a
vector in connecting ports and can be maintained as a vector while on the second line
the term scalared indicates usage of the vector bit-selects bus2[n] in connecting on
port boundaries and the word ‘scalared’ indicates to the tools of such usage. These
directives of vectored and scalared are only for efficient simulation or synthesis and
do not change the functionality of the design.

reg [31:0] memory_bank1 [0: (1024*64)-1];

Example 2-14. Memory declarations.

In the above example, memory_bank is declared to be a memory of 64K locations
of 32 bits each. Elements of memory are reg and are declared and used as such and
the memory is addressable in terms of the entire 32 bits (in terms of the word-size).
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2.7.3 Syntax

Vectored Net and Reg Declarations

This syntax is covered in net declaration in section 2.5.2.

Memory Declarations

memory_variable
::= memory_identifier [ constant_expression : constant_expression ]

Special Facility for Vectored Nets

expandrange
::= range

| scalared range
| vectored range

2.8 Delays on Nets

2.8.1 Introduction

Nets may have delays associated with them as declared in the declarations. These
delays are the delays from the time a driver on a net changes to the time of actual
change on the net. Delays are given by the number or the expression following the
‘#’ symbol. These can be constants, parameters, expressions of these or even
dynamic expressions using other variables. Delays can be rise, fall, or hold(change to
z) delays and each of these delays in turn may have three values—minimum, typical
and maximum. The rise, fall and hold delay specifications are separated by commas
and the min-typ-max specifications are separated by colons. The rise delay includes
delays when values change from 0 to 1, 0 to x and x to 1. Fall delay applies to
changes from 1 to 0, 1 to x and x to 0. The hold delay values apply for changes from
0 to z, 1 to z and x to z changes. The same concepts of delays are useful for gates,
transistors, user-defined primitive instances and behavioral descriptions.

2.8.2 Examples

tri #5 t1, t2;
wire #(10,9,8) w1, w2;
wand #(10:8:6, 9:8:6) w3;

Example 2-15. Net declarations with delay specifications.

In the first example above, t1 and t2 have rise, fall and hold delays of five time
units. In the second line, wires w1 and w2 have three different values for the three
changes—ten for rise, nine for fall, and eight for hold. The rise delay includes delays
when values change from 0 to 1,0 to x and x to 1. Fall delay applies to changes from
1 to 0, 1 to x and x to 0. The hold delay values apply for changes from 0 to z, 1 to z
and x to z changes.
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2.8.3 Syntax

delay ::= delay2 | delay 3
delay3 ::= #delay_value | #( delay_value [,delay_value [,delay_value]])
delay2 ::= #delay_value | #( delay_value [,delay_value])
delay_value

::= unsigned_number
| parameter_identifier
| (mintypmax_expression [,mintypmax_expression] [,mintypmax_expression])

2.9 Integer and Time

2.9.1 Introduction

The type time is 64-bit wide and contains result of system task $time or computation
on other time variables. The type integer is 32 bit and can be assigned and used
freely as integer or 32-bit (signed) register in expressions,

2.9.2 Examples

time t1, t2;
integer i1, i2;

Example 2-16. Integer and time declarations.

2.9.3 Syntax

time_declaration
::= time list_of_register_ identifiers;

integer_declaration
::= integer list_of_register_ identifiers;

2.10 Real Declaration

2.10.1 Introduction

Real numbers are used in Verilog to perform delay descriptions and in abstract
algorithms. Their bit representation is done using IEEE floating point standard.

2.10.2 Example

real r1, r2;

Example 2-17. Real declarations.



2.10.3 Syntax

real_declaration
::= real list_of_ real_identifiers;

list_of_ real_identifiers
::= real_ identifier, {real_ identifier}

2.11 Event Declaration

Event types are special flags that can trigger activity into a process waiting for an
event to occur.

Example and syntax are :

event e1;
event_declaration ::= event list_of_event_variables;

2.12 Parameter Declarations

You can use a parameter wherever a number is allowed, and you can define a
parameter anywhere within a module definition. However, the Verilog language
requires that you define the parameter before you use it. Example 2-17 shows two
parameter declarations. Parameters TRUE and FALSE are unsized, and have values
of 1 and 0, respectively. Parameters SO, S1, S2, and S3 have values 3, 1, 0, and 2,
respectively, and are stored as 2-bit quantities. Parameters are a way of defining
modules which can be configured at the instance time. The module instantitation
statement lets one change the values of parameters in a module to new values for
each instance. Separately, the ‘defparam’ statement also allows one to change the
parameters from outside. This facility is extensively used for operations such as delay
back-annotations from a post-layout circuit into a pre-layout or rtl design.

The parameter data type is automatically deduced by Veriolog compiler using the
expression on the right-hand side of '=' in parameter declarations. These expressions
may be of any valid data-type, like bits, vectors, integer, or reals in Verilog.

2.13 Examples

Following are scalar and vector parameter declarations:

parameter TRUE=1, FALSE=0;
parameter [1:0] S0=3, S1=1, S2=0, S3=2;

Example 2-18. Parameter declaration examples.

2.14 Syntax

parameter_declaration
::= parameter list_of_param_assignments;
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list_of_param_assignments
::=param_assignment {,param_assignment}

param_assignment
::=identifier = constant_expression

2.15 Hierarchical Names

2.15.1 Introduction

Verilog supports names imported from other modules or other scopes in all places a
simple name can occur. These are full hierarchical names as follows: Typically these
are used in back-annotations or forward-annotations from outside the current design
description. SDF files described in chapter 18, may, for example, be used to generate
delay files using full-hierarchical names. These are also very useful for debugging as
seen in Chapter 10. The usage of these for circuit description should be done with
discretion since one is creating connections across module boundaries without
putting the connecting wires or regs on the port list.

2.15.2 Examples

testbench.top_system.cpu.alu.fulladder.cin
testbench.top_system.cpu.reg11

Example 2-19. Hierarchical names.

The name begins with a top-level module-name testbench and then is followed by
instance names until the level at which the name is defined is reached. In the first
line of Example 2-19, the testbench instantiates the system with instance name of
top_system which in turn instantiates cpu with instance name cpu and then alu
followed by instance fulladder of an adder and the cin net.

2.15.3 Syntax

Hier_name::= name_of_module *.name_of_item

2.16 Exercises

Write a declaration for a wire and bus of 64 bits wide and a rise delay of 10 and
fall delay of 8 time units.

Write memory declarations for a 64K x 8-bit memory.

Check the correctness of the following declarations:

net n1, n2;
reg[63:0] r1, r2, r3;
reg [0:-5] r;
events e1, e2;
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4.

5.

Write a declaration of a tri-state wire with charge storage of medium
capacitance.

In Example 2-7, change the net-type to triand and trior and trireg from tri and
then compute the expected results. Simulate and verify the results [Use
$showvars or driver value display to check component and computed values].
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3.1 OVERVIEW

3.1.1 Introduction

Hardware can be described in different levels of abstraction that involve different
levels of detail and model different characteristics. Three commonly understood
levels of abstraction are behavioral, register-transfer-level (RTL), and structural. The
three types of descriptions together constitute the descriptions of hardware in a
hardware description language. These are explained in the following sections of this
chapter.

3.1.2 Examples

module mult_behav(out, in1, in2, carry, sign);
input [31:0] in1,in2;
output [63:0] out;
output carry;
output sign;
reg carry, sign;
reg [63:0]  out;

{carry, out} = in1 * in2;
if ({carry, out} <0)

sign= 1;
else

3 ABSTRACTION LEVELS IN
VERILOG: BEHAVIORAL,
RTL, AND STRUCTURAL

always @(in1 or in2)
begin
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sign = 0;
end

endmodule
Behavioral Level of Modeling of multiplier

module mult_rtl(out, in1, in2, carry, sign);

input[31:0] in1,in2;
output [63:0] out;
output carry;
output sign;
assign {carry, out} = in1 * in2;
assign sign = ({ carry, out} < 0) ? 1 : 0;

endmodule
RTL level of modeling of same multiplier

Example 3-1. Levels of abstractions.

In the above example, a multiplier is modeled at the behavioral and at the RTL
level. For descriptions like these, both behavioral and RTL models are used. The
behavioral model always uses blocks with procedural statements, while the RTL
model uses continuous assignments that begin with keyword 'assign'.

3.1.3 Syntax

source_text
::= {description}

description
::= module_declaration
| UDP_declaration

module_declaration
::= module_keyword module_identifier [list_of_ports];

{module_item}
endmodule

module_Keyword
::= module | macromodule

{module_item}
endmodule

module_item
::=data_declaration
||= functional_descriptions
||= module_timing_descriptions

functional descriptions
::= behavioral_descriptions
||= RTL_descriptions
||= structural_descriptions
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3.2 Behavioral Abstractions In Verilog

3.2.1 Introduction

This level of modeling provides advanced data and control flow in Verilog. This
enables descriptions that are algorithmic descriptions of hardware. It enables
synchronization between different blocks or processes. This is the highest level of
abstraction among the three levels including the structural and the RTL.

Control flow modeling in Verilog at this level is substantially improved. Verilog
derives some of the basic algorithm description capabilities from structured
programming aspects of "C", but with specific facilitations for hardware
descriptions.

Synchronization or timing controls features are also quite advanced especially
when mixed with the copious control flow capabilities. The whole design is
represented as concurrently executing processes or evaluation blocks as explained in
Chapter 4.

Specially created timing specification blocks (Specify Blocks) provide rich inter-
module timing behavior description in Verilog. This is structurally bound to the
module pins or inputs-outputs.

3.2.2 Examples

// Here is an example of behavioral description of the full adder above
// Abstraction is added by a. Use of operator b. Use of vectorizing c. Control flow abstraction
// (always block- Implicit Sensitivity to the RHS operands; Sequential Description adds
power to the
//modeling ability by reducing complexity in control flow (almost random in RTL)

module fullAdder_b(cOut, sum, aIn, bIn, cIn);
output cOut, sum;
input  aIn, bIn, cIn;

reg[1:0]tmp;
reg cOut, sum;

always @(aIn or bIn or cIn)
begin

Imp = aIn+bIn+cIn;
sum = tmp[0];
cOut = tmp[1];

end
endmodule

Example 3-2. Behavioral level of  abstraction – adder.

In the above example, adder is modeled behaviorally using always loop. The
‘always’ keyword is followed by an event control described using ‘@’ sign. The



40 Chapter 3

following event expression indicates that any value change in the inputs aIn, bIn or
cIn triggers the evaluation of the following ‘begin-end’ block. Inside this ‘begin-end’
block, the addition (sum) and the carryOut (cOut) are computed. The addition
operation, using 2 bits with the tmp[1:0] as the target, computes both the output bits
in the first statement of the block. The next two statements separate out the 2 bits
into the sum and cOut bits that appear on the module boundary.

3.2.3 Syntax

behavioral_descriptions
||= initial_statement
||= always_statement
||= task_declaration
||= function_declaration

3.3 Register Transfer Level Abstractions in Verilog

3.3.1 Introduction

Registers are aggregates of data. Data transfer between registers is known as RTL
transfer and the event-driven model as basis for these transfers. The event-driven
model here is crucial to these descriptions. In Verilog, the mechanism to model these
is called continuous assignments. The LHS gets a new value when anything on RHS
changes. This will be the main driver in (logic) synthesis, especially for datapath.
(Control Logic comes from FSM descriptions that will be discussed later.)

These are concurrent. Thus, there is no order implied by the model in these.
However, due to the event driven nature of these and the fact that these are
interdependent, will create an order like in the hardware that is being modeled. As
the RTL descriptions are in between structural and behavioral, these work in between
the other two. In these, we drive the left-hand side just like in ports that are input
ports, the rules for ports that can be driven apply here. Thus, we will only use types
that are physically realizable or can physically be driven on a continuous basis.
Registers (reg declarations) are one-shot deals as far as assignments are concerned.
They are assigned when we get to them in a serial block in "C"-like fashion. But the
continuous assigns can only happen on nets.

In Verilog, one is allowed to use concatenations of nets as a vector net with no
name (like in a synthesizer with property on the net, to keep it post-synthesis). This
is useful at times, but it is better to create another net and assign the concatenations
all other nets to this net. This helps in debugging and better readability of the code.

Like "C", one can also combine the declaration and assignment for nets with
continuous assignments. This is the first abstraction from a gate-level description.

Rather than use an and gate, one would write:

assign c = a & b;
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In RTL descriptions, power of expressions is available to you in place of a
network of several gates, which are hard to program with for achieving actualization
of an algorithm or a machine in hardware. Boolean Algebra is also now applicable
for optimizations and reorganizations. The additional modeling capabilities here
include: delay specifications and strength specifications. See the examples below and
syntax as well for details.

If you want to drive a value onto a wire, wand, wor, or tri, use a continuous
assignment to specify an expression for the wire's value. You can specify a
continuous assignment in two ways:

Use an explicit continuous assignment statement after the wire, wand,
wor, or tri declaration.

Specify the continuous assignment in the same line as the declaration
for a wire.

Example 3-3 shows two equivalent methods for specifying a continuous
assignment for wire a.

wire a; //declare
assign a = b & c; //assign
wire a = b & c; //declare and assign

Example 3-3. Two equivalent continuous assignments.

3.3.2 Example

module fullAdder_r(cOut, sum, aIn, bIn, cIn);
output cOut, sum;
input    aIn, bIn,  cIn;

wire x1,x2,x3,x4,x5,x6,x7,x8,x9;
// This describes the same full adder using RTL

assign x2 = ~(aIn & bIn);
assign cOut= ~(x2& x8);
assign x9 = ~(x5 ^ x6);
assign x5 = ~(x1 | x3);
assign x1 = ~(aIn | bIn);

assign x8 = (x1 | x7);
assign sum = ~x9;

assign x3 = ~x2;

assign x6 = ~x4;
assign x4 = ~cIn;
assign x7= ~x6;

endmodule

Example 3-4. RTL abstractions – adder.
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In Example 3-4 above, the adder is modeled using continuous assignments at the
RTL level.

module fullAdder_r(cOut, sum, aIn, bIn, cIn);
output  cOut, sum;
input   aIn,  bIn,   cIn;

wire x2;

// This describes the same RTL above, but using power of expressions

// This is not simplified just to show how it was obtained by substituting
// each intermediate term above until only primary inputs remain on RHS

assign cOut = ~(~(aIn & bIn) & (((-(aIn | bIn)) |
~(~(~cIn)))));

assign sum = ~ (~((~((~(aIn | bIn)) | (~~(aIn & bIn))))^ (~(~cIn))));

endmodule

Example 3-5. RTL abstractions – adder with boolean optimizations.

module (cOut, sum, aIn, bIn, cIn);
output cOut, sum;
input       aIn, bIn, cIn;
wire x2;

// This describes the same RTL above, but simplifying using Boolean algebra rules
assign cOut = ~(~(aIn & bIn) & (((~(aIn | bIn)) | ~(cIn)));

assign sum = (~((~(aIn | bIn)) | (aIn & bIn)))^ (cIn);
endmodule

module ffNand(q,qBar,preset,clear);
output q, qBar;
input preset, clear;
wire q, qBar;
tri q1,q2;
wire preset, clear;

// Following 2 declarations are examples of declarations with
// continuous assignments

// The following net needs a pull for it to survive
tri (pull0, pull1) #(10: 5 :20) d = ~(qBar & preset);

// The following is weaker than weak
tri (highz0, highz1) #(10: 5 :20) d1 = ~(qBar & preset);

// Simple Continuous assignments
assign q = ~(qBar & preset);
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assign qBar = ~(q & clear);

// Continuous assignments with rise and fall delays
assign #(10:l)q1 = ~(qBar & preset);

//Continuous assignments with delays and drive strengths
assign (strong0, strong1) #(10:l)q1 = ~(qBar & reset);
// Here is the overriding strength even to the strong
// This also models rise, fall and hold delay
assign (supply0, supply1) #(10: 1: 20) v = ~(qBar & reset);

endmodule

Example 3-6. Continuous assignments – RTL modeling.

3.3.3 Syntax

RTL_descriptions
||= continuous_assign

continuous_assign
::= assign [drive_strength] [delay] list_of_assignments ;
| NETTYPE [drive_strength] [expandrange] [delay] list_of_assignments ;

3.3.4 RTL Descriptions – Other Definitions

The word RTL descriptions is also used for the synthesizable subset of Verilog
described in Chapter 13. This typically includes state descriptions using behavioral
blocks, and combinational description using behavorial or continuous assignments.

3.4 Expressions

3.4.1 Overview

In general, expressions are allowed in continuous assignments on the right-hand
side. Expressions provide ability to abstract operations up from the gate-level.
Expressions consist of operators and operands. The operands are formed by the
various data declared items like nets, regs, integers, reals, time, event, etc. They may
also be formed by sub-expressions which may be parenthesized. The operators are
formed by symbols that represent operations such as addition, subtraction,
multiplication, etc., represented by symbols like +, -, *.

3.5 Operators in Expressions

3.5.1 Introduction

Operators identify the operation to be performed on their operands to produce a new
value. Most operators are either unary operators that apply to only one operand, or
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binary operators that apply to two operands. Two exceptions are conditional
operators, which take three operands, and concatenation operators, which take any
number of operands. Verilog provides a rich set of operators as described in the next
few pages.

The main operators under various categories are:
Unary Operators: + - ! ~ & ~& | ^| ^ ~^

Relational Operators : < > <=> = =

Arithmetic Operators : + - */ %

Logical Operators : ! && II != == === !==

Boolean Operators: & | ~ ^ ^~

Shift Operators : >> <<

Concatenation: { }

If Operator : ? :
The name for the operators individually are given below.

Operator Description

{ } concatenation

+ add

subtract

* multiply

/ divide

% modulus

> greater than

>= greater than or equal to

< less than

<= less than or equal to

= equal to

!= not equal to

! logical NOT

&& logical AND

|  |   logical OR

== logical equality

!= logical inequality

bit-wise NOT

& bit-wise AND

|        bit-wise OR

^        bit-wise XOR

^~   ~^    bit-wise XNOR

& reduction AND

-

~
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| reduction OR
~&              reduction NAND
~| reduction NOR
^       reduction XOR

~^      reduction XNOR
« left shift

»                   right shift
? :            conditional or if operator

The tables for the binary operators are given in Figure 3-1.

3.5.2 Examples and Explanations

In the following descriptions, the terms variable and variable operand refer to
operands or expressions that are not constant-valued expressions. This group
includes wires and registers, bit-selects, and part-selects of wires and registers,
function calls, and expressions that contains any of these elements.
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Arithmetic Operators

Arithmetic operators perform simple arithmetic on operands.
The Verilog arithmetic operators are:

Addition (+)

Subtraction (-)

Multiplication (*)

Division (/)

Modulus (%)
You can use the addition (+), subtraction (-), and multiplication (*) operators with

any operand form (constants or variables). The addition (+) and subtraction (-)
operators can be used as either unary or binary operators.

Example 3-7 shows three forms of the addition operator.

parameter size=8;
wire [3:0] a,b,c,d,e;
assign c = size + 2; //constant + constant
assign d = a + 1; //variable + constant
assign e = a + b; //variable + variable

Example 3-7. Addition operation.

Relational Operators

Relational operators compare two quantities and yield a 0 or 1 value. A true
comparison evaluates to 1; a false comparison evaluates to 0. All comparisons
assume unsigned quantities.

The Verilog relational operators are:
Less than (<)

Less than or equal to (<=)

Greater than (>)

Greater than or equal to (>=)
Example 3-8 shows the use of a relational operator.

function [7:0] min( i1, i2);
input [7:0] i1, i2;
i f ( a<=b)

min = i1;
else

min = i2;
endfunction

Example 3-8. Relational operators.
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Equality Operators

Equality operators generate a 0 if the expressions being compared are not equal and a
1 if the expressions are equal. Equality and inequality comparisons are performed
bit-wise. The Verilog equality operators are:

Equality (==)

Inequality (!=)
Example 3-9 shows the equality operator used to test for a JMP  instruction. The

output signal opcode is set to 1 if the two high-order bits of instruction are equal to
the value of parameter JMP ; otherwise jump is set to 0.

module check_opcode_jmp( instruction, opcode);
parameter jmp = 0;
input [7:0] instruction;
output opcode;
assign opcode = (instruction[7:6] == jmp);

endmodule

Example 3-9. Equality operator.

Logical Operators

Logical operators generate a 1 or a 0, according to whether an expression evaluates
to true (1) or false (0). The Verilog logical operators are:

Logical not (!)

Logical and (&&)

Logical or (||)
The logical not operator produces a value of 1 if its operand is zero, and a value of

0 if its operand is nonzero. The logical and operator produces a value of 1 if both
operands are nonzero. The logical or operator produces a value of 1 if either operand
is nonzero.

Example 3-10 shows some logical operators.

module check_inst(inst, ok);
`define ADD=0,
`define SUB=1,
`define MUL=2,
`define DIV =3;
input [7:0] inst;

assign ok = ((inst == `ADD) | (inst == `SUB) I
(inst == `MUL) | (`inst == `DIV));

endmodule

Example 3-10. Logical operators.
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Bit-Wise Operators

Bit-wise operators act on the operand bit-by-bit. The Verilog bit-wise operators are:
Unary negation (~)

Binary and (&)

Binary or (I)

Binary xor (^)

Binary xnor (^~ or ~^)
Example 3-11 shows some bit-wise operators.

module full_adder( i1, i2, cin, sum, cout);
input i1,i2,cin;
output sum, cout;

assign sum = i1 ̂  i2 ̂  cin;
assign cout = (i1&i2) | (cin & (i1|i2));

endmodule

Example 3-11. Bit-wise operators.

Reduction Operators

Reduction operators take one operand and return a single bit. For example, the
reduction and operator takes the and value of all the bits of the operand and returns a
1-bit result. The Verilog reduction operators are

Reduction and (&).

Reduction or (|)

Reduction nand(~&)

Reduction nor (-|)

Reduction xor (^)

Reduction xnor (^~ or ~^)
Example 3-12 shows the use of some reduction operators.

module par (in, parity, all_ones);
input [7:0] in;
output parity, all_ones;
assign parity = ^in;
assign all_ones = & in;

endmodule

Example 3-12. Reduction operators.
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Shift Operators

The Verilog shift operators are:

Shift left (<<)

Shift right (>>)
A shift operator takes two operands and shifts the value of the first operand right

or left by the number of bits given by the second operand. After the shift, vacated bits
are filled with zeros. Example 3-13 shows how a right-shift operator is used to
perform a division by 4.

module div4( dividend, res);
input [7:0] dividend;
output [5:0] res;
assign res = dividend >> 2; //divide by 4 by shifting right 2 bits

endmodule

Example 3-13. Shift operator.

If Operators

If or Conditional operators (? :) evaluate an expression and return a value that is
based on the truth of the expression. Example 3-14 shows how to use conditional
operators. If the expression (op == ADD) evaluates to true, the value a+b is assigned
to result; otherwise, the value a-b is assigned to result.

module add_or_subtract( i1, i2, op, result);
`define ADD =1'b1;

input [7:0] a, b;
input op;
output [7:0] result;
assign result = (op == ̀ ADD) ? i1+i2 : i1-i2;

endmodule

Example 3-14. Conditional operator.

Conditional operators can be nested to produce an if . . . else if construct.
Example 3-15 shows the conditional operators ? : used to evaluate the value of op
successively and perform the correct operation.

module alu( in1, in2, operator, result);
`define ADD=0
`define SUB=1
`define AND=2
`define OR=3
`defien XOR=4;
input [7:0] in1, in2;
input [2:0] operator;
output [7:0] result;
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assign result = ((op == 'ADD) ? in1+in2 : (
(op == 'SUB) ? in1-in2 : (
(op == 'AND) ? in1&in2: (
(op == 'OR) ? a|b : (
(op == 'XOR) ? in1^in2 : (a))))));

endmodule

Example 3-15. Nested conditional operator.

Concatenations

Concatenation combines one or more expressions to form a larger vector. In the
Verilog language, you indicate concatenation by listing all expressions to be
concatenated, separated by commas, in curly braces ({}). Any expression except an
unsized constant is allowed in a concatenation. For example, the concatenation
{1'bl,1'b0,1'b0} yields the value 3'bl00.

You can also use a constant-valued repetition multiplier to repeat the
concatenation of an expression. The concatenation {1'b1,1'b0,1'b0} can also be
written as {1'b1,{2{1'b0}}} to yield 3'b100. The expression {2{expr}}within the
concatenation repeats expr two times. Example 4-12 shows a concatenation that
forms the value of a condition-code register.

output [7:0] ccr;
wire half_carry, interrupt, negative, zero, overflow, carry;

assign ccr = { 2'b00, half_carry, interrupt,
negative, zero, overflow, carry };

Example 3-16. Concatenation operator.

Example 3-17 shows an equivalent description for the concatenation.

output [7:0] ccr;
assign ccr[7] = 1'b0;
assign ccr[6] = 1'b0;
assign ccr[5] = half_carry;
assign ccr[4] = interrupt;
assign ccr[3] = negative;
assign ccr[2] = zero;
assign ccr[l] = overflow;
assign ccr[0] = carry;

Example 3-17. Concatenation equivalent.

3.5.3 Operators in Expressions – Syntax
expression

::= primary
| unary_operator primary

...
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| expression binary_operator expression
| expression question_mark expression : expression
| string

binary_operator ::=
+ -{} / %  == != === !== && || = = & | ̂  ̂ ~

<UNARY_OPERATOR> is one of the following tokens:

+ - ! ~ & ~& | ^| ^ ~^
<BINARY_OPERATOR> is one of the following tokens:

+ - * / % == != === !== && || < <= > >= & | ^ ^~ >> <<

<QUESTION_MARK> is ? (a literal question mark).

3.6 Operands in Expressions

3.6.1 Introduction

The following kinds of operands can be used in an expression:
Numbers

Wires and registers

Bit-selects

Part-selects

Function calls

Integers

Reals

Time
Thus, any data type declared using statements discussed in Chapter 2 and its

derivative can be used in an expression. The following pages discuss the usage of
various types of operands in an expression.

3.6.2 Examples and Explanations

Numbers

A number is either a constant value or a value specified as a parameter. You can
define constants as sized or unsized, in binary, octal, decimal, or hexadecimal bases.
The default size of an unsized constant is 32 bits. The based constants can be
specified using the form ‘size’ followed by ‘base’ followed by the number. Size is
written as a decimal number like 32 or 64. The base can be written as quote
character followed by ‘b’ or ‘h’ or ‘d’ or ‘o’ indicating binary, hexadecimal, decimal,
or octal number.
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4’b1010 – sized binary constant with length 4 and value 1010
‘b1010 –   unsized binary constant with value 1010
10 – unsized and unbased decimal constant with value 10
2’d10 – decimal constant 10 using the length and base notation
1’ha    –   sized and based hex constant with value a
2’o12      –     sized and based octal constant 12

Example 3-18. Different representations of constant 10 in Verilog.

Wires and Registers

Variables that represent both wires and registers are allowed in an expression. If the
variable is a multi-bit vector and you use only the name of the variable, the entire
vector is used in the expression. Bit-selects and part-selects allow you to select single
or multiple bits, respectively, from a vector. These are described in the next two
sections.

In the Verilog fragment shown in Example 3-19, a, b, and c are 8-bit vectors of
wires. Since only the variable names appear in the expression, the entire vector of
each wire is used in evaluating the expression.

wire [7:0] a,b,c;
assign c = a & b;

Example 3-19. Wire operands.

Bit-Selects

A bit-select is the selection of a single bit from a wire, register, or parameter vector.
The value of the expression in brackets ([ ]) selects the bit you want from the vector.
The selected bit must be within the declared range of the vector. Example 4-15
shows a simple example of a bit-select with an expression.

wire [7:0] a,b,c;
assign c[0] = a[0] & b[0];

Example 3-20. Bit-select operands.

Part-Selects

A part-select is the selection of a group of bits from a wire, register, or parameter
vector. The part-select expression must be constant-valued in the Verilog language,
unlike the bit-select operator. If a variable is declared with ascending indices or
descending indices, the part-select (when applied to that variable) must be in the
same order. The expression in Example 3-21 can also be written (with descending
indices) as shown in Example 3-21.
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assign c[7:0] = a[7:0] & b[7:0]

Example 3-21. Part-select operands.

Function Calls

Verilog allows you to call one function from inside an expression and use the return
value from the called function as an operand. Functions in Verilog return a value
consisting of one or more bits. The syntax of a function call is the function name
followed by a comma-separated list of function inputs enclosed in parentheses.
Example 3-22 shows the function call fcall used in an expression.

assign error = ! fcal1(in1, in2);

Example 3-22. Function call used as an operand.

Functions are described in detail in Chapter 5 on Behavioral Descriptions

Concatenation of Operands

Concatenation is the process of combining several single- or multiple-bit operands
into one large bit vector. The use of the concatenation operators, a pair of braces
({}), is described in the "Concatenations" section earlier in this chapter.
Example 3-23 shows two 32-bit vectors (halfword1 and halfword2) that are joined to
form a 64-bit vector that is assigned to a 64-bit wire vector (byte).

wire [63:0] word;
wire [31:0] half_word1, half_word2;
assign word = {half_wordl, half_word2};

Example 3-23. Concatenation of operands.

Integers and Time

Integers and time are 32-bit and 64-bit quantities respectively and can be used as
such. All the operations on vector-regs can then be used on these types of operands.

Reals

Reals can be used in expressions to evaluate different arithmetic operations. The
reals do not have a bit-representation that represents them exactly and therefore they
cannot be used in bit-operations without converting using the system function
$bitstoreal or $realtobits.

3.6.3 Syntax of Operands in Expressions

primary
::= number
| identifier
| identifier [ expression ]
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| identifier [ msb_constant_expression : lsb_constant_expression ]
| concatenation
| multiple_concatenation
| function_call
| ( mintypmax_expression)

number
::= decimal_number
| octal_number
| binary_number
| hex_number
| real_number

real_number ::=
[sign] unsigned_number.unsigned_number
[sign] unsigned_number.[.unsigned_number]e[sign]unsigned_number
[sign] unsigned_number.unsigned_number

decimal_number ::=
[sign] unsigned_number |
[size] decimal_base unsigned_number

binary_number ::= [size] binary_base binary_digit { _ | binary_digit)
octal_number ::= [size] octal_base octal_digit { _ | binary_digit}
hex_number ::= [size] hex_base hex_digit { _ | hex_digit}
sign ::=+|-
size ::= unsigned_number
unsigned_number ::= decimal_digit { _ | decimal_digit}
decimal_base ::= ‘d | ‘D
binary_base ::= ‘b | ‘B
octal_base ::= ‘o | ‘O
decimal_number

::= A number containing a set of any of the following characters, optionally
preceded by + or -

hex_digit ::=

BASE is one of the following tokens:
'b 'B 'o 'O 'd 'D 'h 'H

concatenation
::= { expression{ ,expression} }

multiple_concatenation
::= { expression { expression{ ,expression}} }

function_call
::= function_identifier (expression{ ,expression})
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| system_function_identifier (expression{,expression})
| system_function

system_function_identifier
::=_$identifier

3.7 Special Considerations in Expressions

3.7.1 Constant-Valued Expressions

A constant-valued expression is an expression whose operands are either constants or
parameters. The expression (op == ADD) ? a+b : a-b is not a constant-valued
expression, since the value depends on the variable op. If the value of op is 1, b is
added to a; otherwise, b is subtracted from a.

// all expressions are constant-valued,
// except in the assign statement.
module add_or_subtract( a, b, op, s);
// performs s = a+b if op is ADD
// s = a-b if op is not ADD

parameter size=8;
parameter ADD= 1 'b1;
input op;
input [size-1:0] a, b;
output [size-1:0] s;
assign s = (op == ADD) ? a+b : a-b; //not a constant-valued expression

endmodule

Example 3-24. Constant valued expressions.

3.7.2 Operators on Reals

All of the above operators apply to reals except the following:
{ } % === !== ~ & | ̂  ̂ ~ ~^ & ~& |~ | << >>

The reasons are lack of semantics for these operations for reals. In general, the bit
representation for reals is not considered unique, and thus, bit-operations on these
are not defined.

3.7.3 Operator Precedence

The order is:
Unary

Arithmetic

Shift

Relational
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Boolean
Logical, if

3.7.4 Examples of Various Operator Usage

10% 3=1
The remainder operation of 10 by 3 gives 1.

-10%3 = -1 (sign is sign of first operand)
The remainder operation of -10 by 3 gives -1.

a < size
Compare if a is less than size

a == b
bit by bit compare of and b for equality

`b00x = `b00x
Comparison with '==' results in x

'b00x === 'b00x
Comparison with exact equality ‘===’ result is 1

`b00x != `b00x
Compare if not equal

regA = alpha && beta
assign regA with the boolean and of alpha and beta

regA = alpha || beta
assign regA with the boolean and of alpha and beta

result = start << 2
assign result with start left shifted twice

wire [15:0] busa = drive_busa ? data: 16`bz;
assign busa with data if the drive_busa is one otherwise assign z to it from this

driver.
This models a tri-state bus with control signal

{ a.b[3:0],w,3'b101}
Concatenate a, 4 bits of b with index 3 to 0, w and a constant with bit value ‘101’

{ a, b[3], b[2], b[1], b[0], w, 1'b1, 1'b0, 1'b1 }
This concatenation is same as above but written using bit-selects on b abd
separating bits of a constant.

{ 4{w}} = {w,w,w,w}.

This is a concatenation using repeat factor.

Example 3-25. Examples of operator usage.

3.7.5 Comparisons With X's and Z's
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This applies to comparisons done in:

a.

b.

c.

comparison operators

case statements

if operators

3.7.6 Expression Bit Lengths

In the earlier versions of Verilog, size of an expression was taken on the left and
right side of the assignment operator could be different, but with the IEEE 1364
standardization, largest operand size is taken including the left-hand side of the
assignment operator. Thus, in the following example, the three assignments to c all
perform 17-bit arithmetic. In earlier versions of Verilog, the first assignment to c
would result in 16-bit operation and potential loss of carry.

reg [15:0] a, b;
reg [16:0] c;
reg [63:0] d;

c = a + b
c = 0 + (a+b);
c= 17'b0 + a + b;

Example 3-26. Different ways to perform sized operations.

3.8 Syntax for Expressions

net_1value
::=net_dentifier
| net_identifier [ expression ]
| net_identifier [ constant_expression: constant_expression ]
| net_concatenation

reg_1value ::=
reg_identifier
| reg_identifier[expression]
| reg_identifier[msb_constant_expression: 1sb_constant_expression]
| reg_concatenation

constant_expression
::= constant_primary
| unary_operator constant_primary
| constant_expression binary_operator constant_expression
| constant_expression ? constant_expression : constant_expression
| string

unary_operator ::=
+ | - | ! | | ~& ||| ~|| ̂ | ~^ |^~
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mintypmax_expression
::= expression
| expression : expression : expression

expression
::= primary
| unary_operator primary
| expression binary_operator expression
| expression question_mark expression : expression
| string

binary_operator ::=
+ - { } / % = = !=  = = =  !== & & || = = & | ^ ^~

QUESTION_MARK is ? (a literal question mark).

STRING is text enclosed in "" and contained on one line.

primary
::= number
| identifier
| identifier [ expression ]
| identifier [ msb_constant_expression : lsb_constant_expression ]
| concatenation
| multiple_concatenation
| function_call
| (mintypmax_expression)

number
::= decimal_number
| octal_number
| binary_number
| hex_number
| real_number

real_number ::=
[sign]unsigned_number.unsigned_number
[sign] unsigned_number.[.unsigned_number]e[sign]unsigned_number
[sign] unsigned_number.unsigned_number

decimal_number ::=
[sign] unsigned_number |
[size] decimal_base unsigned_number

binary_number ::= [size] binary_base binary_digit { _ | binary_digit)
octal_number ::= [size] octal_base octal_digit { _ | binary_digit}
hex_number ::= [size] hex_base hex_digit { _ | hex_digit}
sign ::=+|-
size ::= unsigned_number
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unsigned_number ::= decimal_digit { _ | decimal_digit)
decimal_base ::= ‘d | ‘D
binary_base ::= ‘b | ‘B
octal_base ::= ‘o | ‘O
decimal_number

::= A number containing a set of any of the following characters, optionally preceded by +
or-

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 _

hex_digit ::=  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | f | A | B | C | D | E | F | x | X |
z |Z

BASE is one of the following tokens:
'b 'B 'o 'O 'd 'D 'h 'H

concatenation
::= { expression{ ,expression} }

multiple_concatenation
::= { expression { expression{ ,expression} } }

function_call
::= function_identifier ( expression{ ,expression})
| system_function_identifier ( expression{ ,expression})
| system_function

system_function_identifier
::=_$identifier

3.9 Example of Register Transfer Level of Abstraction

//Parametrized Models for datapath using continuous assignments

`define clock_period 10

module adder(in1, in2, sum, carry, cc);

parameter size = 32; //default is 32-bit adder
input [size-1:0] in1, in2;
output [1:0] cc; // condition code

output [size-1:0] sum;
output carry;

assign #`clock_period{carry, sum} = in1 + in2;

// Set condition codes
assign cc[0] = (sum == 0)? 1:0;//Condition Code 0 - Zero Value



60 Chapter 3

assign cc[l] = (sum[size-l]); //Condition Code 1 - Negative Value

endmodule

module multiplier(inl, in2, product, carry, cc);

parameter size = 32; //default is 8-bit adder
input [size-l:0] inl, in2;

output [size-1:0] product;
output carry;
output [1:0] cc; // condition code

assign #(2*`clock_period) {carry, product} = inl * in2;
// Set condition codes
assign cc[0] = (product == 0)? 1:0; //Condition Code 0 - Zero Value
assign cc[l] = (product[size-l]); //Condition Code 1 - Negative Value

endmodule

module alu;
endmodule

module multiplexor(out, control, inl, in2, in3, in4);
parameter size = 32;
input [1:0] control;
input [size-l:0] inl, in2, in3, in4;
output [size-1:0] out;

assign out = (control == 0) ? inl :
((control == 1) ? in2 :
((control == 2) ? in3 :
((control == 3) ? in4 :
'bx)));

endmodule

module bus_control;
parameter size = 32;
tri [size-l:0]bus;
wire [size-l:0] data;
wire dcontrol;
assign bus = dcontrol ? data: 128'bz;

endmodule

module comparator(inl, in2, compare);
parameter size=32;
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input [size-l:0] inl, in2;
output compare;

assign compare = (inl == in2);
endmodule

module xdetect(in, xdet);
parameter size=32;
input [size-1:0] in;
output xdet;

assign xdet = ((in == in) ? 0:1);
endmodule

module barrel_shifter(func, mode, out, in);

parameter size = 32;
output [size-1:0] out;
input [size-l:0] in;

input func, mode;

`define SHIFT 1
`define ROTATE 0
`define LEFT 1
`define RIGHT 0

`define shift_expr (mode ? (in << 1): (in >> 1))
`define rotate_expr (mode ? ({in[size-2:0], in[size-l]}): ({in[0], in[size-l:l]}))

assign out = `shift_expr;

assign out = `rotate_expr;

assign out = func ? ̀ shift_expr: ̀ rotate_expr;

endmodule

module test;

parameter alu_size = 64;

//Build and test a 64-bit alu using the above datapath elements
wire [alu_size-l:0] sum, prod, shift_out, out;
wire cl,c2;

reg [alu_size-l:0] rl, r2;
reg func 1, mode;
reg [1:0] control;
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reg [1:0] func2;

wire [1:0] ccodel, ccode2;

/* Build 64-bit DataPath and test it using the above Verilog modules */

adder a (rl, r2, sum, cl, ccodel);

multiplier m (rl, r2, prod, c2, ccode2);

comparator c (rl, r2, compare_out);

barrel_shifter b (funcl, mode, shift_out, rl);

multiplexor mx(out, func2, sum, prod, {compare_out,63'b0}, shift_out);

defparam a.size = alu_size;
defparam m.size = alu_size;
defparam c.size = alu_size;
defparam b.size = alu_size;
defparam mx.size = alu_size;

initial
begin: testl

rl = 5;
r2 = 3;
funcl = 1;
mode = 1;

for (func2 =0; func2 <=3; func2=func2+l)
begin

#100
$display("alu inputs func2 = %0d inl=%0d and in2=%0d func=%0d

mode=%0d give output out =%0d with carryl=%0d carry2=%0d and condition codel=%0d
code2=%0d",

func2, rl, r2, funcl, mode, out, cl, c2, ccodel, ccode2);
if (func2 == 3) disable testl;

end

end

endmodule

Example 3-27. Datapath design using continuous assignments RTL
abstractions.



ABSTRACTION LEVELS IN VERILOG 63

3.10 Structural Descriptions In Verilog

3.10.1 Structural Constructs – Overview

3.10.1.1 Introduction – The structural abstraction level entails the hierarchy and
connectivity descriptions of module. Modules in turn can have other modules,
behavioral blocks, RTL descriptions, built-in gates and transistors (single bits), and
user-defined primitives. The other modules are included using the constructs of
module instantiations. The gates, switches and udps can be viewed as predefined
modules. Then rules for instancing these fall into the rules of instancing modules.

3.10.1.2 Example
module fullAdder_s(cOut, sum, aIn, bIn, cIn);

output cOut, sum;
input
wire x2;
nand (x2, aIn, bIn),

(cOut, x2, x8);
xnor (x9, x5, x6);
nor (x5, xl,x3),

(xl, aIn, bIn);
or (x8,xl,x7);
not (sum, x9),

(x3, x2),
(x6, x4),
(x4, cIn),
(x7, x6);

endmodule
module ALU(Data, Address, control);

inout Data, Address, control;
fullAdder(cOut, sum, aIn, bIn, cIn);
Multiplier(overflow, product, aIn, bIn, cIn);

endmodule

module CPU(Data,Address,control);
inout Data, Address, control;

ALU a(Data, Address, control);
FPU f(Data, Address, control);
REGISTERS r(Data, Address, control);
QUEUES q(Data, Address, control);
CONTROL_UNIT c(Data, Address, control);

endmodule

Example 3-28. Structural design – A CPU with details of adder at the gate-
level.

aIn, bIn, cIn;
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3.10.1.3 Syntax
structural_descriptions::=

gate_declaration
||= UDP_instantiation
||= module_instantiation
||= parameter_override

3.10.2 Structural Constructs - Module Definitions

3.10.2.1 Introduction – Modules in Verilog provides framework for the
hierarchical design. These form a basic design unit that can be instantiated. Module
allows creating different views of the same design unit [architectural, rtl, structural].
Each module has its own namespace or scope. It also has IOs, parameters and body.

The transfer of data across a module boundary happens via well-defined interface
known as the ports of a module. These have been defined in the section 2.6 on port
types. The syntax section 3.5.2.3 again provides the details of syntax of ports for
ready reference.

A body of a module has everything else in the language, i.e., all other constructs
in Verilog discussed throughout this book. A module has data declaration of type
parameters. Parameters are a way of defining generic units that can be configured in
some dimensions at instance time or at redefinition. Verilog parameters allow you to
customize each instantiation of a module. By setting different values for the
parameter when you instantiate the module, you can cause different logic to be
constructed. Back-annotating delays is the most common application of parameters.

A parameter represents constant values symbolically. The definition for a
parameter consists of the parameter name and the value assigned to it. The value can
be any constant-valued expression of integer or Boolean type, but not of type real. If
you do not set the size of the parameter with a range definition or a sized constant,
the parameter is unsized and defaults to a 32-bit quantity.
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3.10.2.2 Examples – The following is an example of module definition with a
parameter.

module adder (in1, in2, sum, carry, cc);
parameter size = 32; //default is 32-bit adder
input [size-1:0] inl, in2;
output [1:0] cc; // condition code
output [size-1:0] sum;
output carry;

assign #`clock_period{carry, sum} = inl + in2;
// Set condition codes
assign cc[0] = (sum == 0)? 1:0;//Condition Code 0 - Zero Value
assign cc[l] = (sum[size-l]); //Condition Code 1 - Negative Value

endmodule

Example 3-29. Example of parametrized module definitions.

Parameters

Verilog parameters allow you to customize each instantiation of a module. By setting
different values for the parameter when you instantiate the module, you can cause
different logic to be constructed. A parameter represents constant values
symbolically. The definition for a parameter consists of thè parameter name and the
value assigned to it. The value can be any constant-valued expression of integer or
Boolean type, but not of type real. If you do not set the size of the parameter with a
range definition or a sized constant, the parameter is unsized and defaults to a 32-bit
quantity. The typical uses of parameters are in delays and sizes, but they have broad
applications.

Macromodules

Macromodules allow definition of modules that get compiled as parts of the modules
in all instantiations without the module boundaries.

macromodule adder (inl,in2,outl);
input [3:0] in1,in2;
output [4:0] outl;
assign outl = inl + in2;

endmodule

Example 3-30. Example of a macromodule construct.

Named Ports in Modules

module ex4( .in_a(a), .in_b(b), .out(z));
input a, b;
output z;
........................
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endmodule

module ex5(  .il(a[l]), .i0(a[0]),z  ) ;
input [1:0] a;
output z;

endmodule

module ex6( .i({a,b}), z);
input a,b;
output z;

endmodule

Example 3-31. Named ports in modules.

You can rename a port by explicitly assigning a name to a port expression by
using the dot (.) operator. The module definition fragments in Example 3-31 show
how to rename ports. The ports for module ex4 are explicitly named in_a, in_b, and
out and are connected to nets a, b, and z. Module ex5 shows ports named il, i0, and
z connected to nets a[l], a[0], and z, respectively. The first port for module ex6 (the
concatenation of nets a and b) is named i.

3.10.2.3 Syntax

module_declaration
::= module_keyword module_identifier [list_of_ports];

{module_item}
endmodule

module_keyword
::= module | macromodule

{module_item}
endmodule

list_of_ports
::=( port {,port })

port
::= [port_expression]
| .port_identifier ([port_expression]  )

port_expression
::=port_reference
| { port_reference ,port_reference }

port_reference
::= port_identifier
| port_identifier[ constant_expression ]
| port_identifier [ msb_constant_expression :lsb_constant_expression ]

. . . . . . . . . . . . . . . . . . . . . . . .
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3.10.3 Structural Constructs – Module Instantiation

3.10.3.1 Introduction – This is a mechanism to create copies of the modules. It is
also a mechanism to describe connectivity and a mechanism to create hierarchical
design. This is a mechanism to select various views of the design units. This supports
hierarchical names.

Module instantiations are copies of the logic in a module that define component
interconnections. A module instantiation is done using the following form:

module_name instance_name1 (terminal1, terminal2), instance_name2 (terminal1,terminal2);

A module instantiation consists of the name of the module (module_name),
followed by one or more instantiations. An instantiation consists of an instantiation
name (instance_name) and a connection list. A connection list is a list of expressions
called terminals, separated by commas. These terminals are connected to the ports of
the instantiated module. Terminals connected to input ports can be any arbitrary
expression. Terminals connected to output and inout ports can be identifiers, single-
or multiple-bit slices of an array, or a concatenation of these. The bit widths for a
terminal and its module port must be the same.

Named and Positional Notation

Module instantiations can use either named or positional notation to specify the
terminal connections. In name-based module instantiation, you explicitly designate
which port is connected to each terminal in the list. Undesignated ports in the
module are unconnected. In position-based module instantiation, you list the
terminals and specify connections to the module according to the terminal's position
in the list. The first terminal in the connection list is connected to the first module
port, the second terminal to the second module port, and so on. Omitted terminals
indicate that the corresponding port on the module is unconnected. If you use an
undeclared variable as a terminal, the terminal is implicitly declared as a scalar
(1-bit) wire. After the variable is implicitly declared as a wire, it can appear
wherever a wire is allowed

3.10.3.2 Examples of Structural Descriptions Using Modules

Example 1

Example 3-32 shows the declaration for the module m with two instances (ml and
m2).

module next_level(bus0, bus 1, out); //description of module SEQ
input bus0, bus 1;
output out;

endmodule
......
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module top( il, i2, i3, i4, ol, o2);
input il, i2, i3, i4;

output ol, o2;
next_level 10(il, i2, i3), //instantiations of module SEQ
l1(.out(ol), in.(i3),. Bus0(i2));

endmodule

Example 3-32. Module instantiations.

Example 2

In Example 3-33, SEQ_2 is instantiated by using named notation, as follows:

Signal OUT1 is connected to port OUT of the module SEQ.
Signal D3 is connected to port BUS1.
Signal D2 is connected to port BUS0.
SEQ_1 is instantiated by using positional notation, as follows:
Signal DO is connected to port BUS0 of module SEQ.
Signal Dl is connected to port BUS1.
Signal OUT0 is connected to port OUT

Example 3-33. Module definitions and instantiation – hierarchical design
example.
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module r4200 (SysAD, SysADC, SysCmd, SysCmdP, ValidIn_, ValidOut_,
SysRqst_, ExtRqst_, Release_, RdRdy_, WrRdy_, MasterClock,
MasterOut, TClock, RClock, SyncOut, SyncIn, Reset_,
ColdReset_, ByPassPLL_, BigEndian_, DataRate_, Int_,
NMI_, Status, JTDI, JTCK, JTDO, JTMS);

// The following input, output, or inout information is from
//Tables 1-5 thru 1-9.

inout [63:0] SysAD;
inout [7:0] SysADC;
inout [8:0] SysCmd;
inout SysCmdP;
input ValidIn_;
output ValidOut_;
input ExtRqst_;
output Release_;
output MasterOut;
output SysRqst_;
input RdRdy_;
input WrRdy_;
input MasterClock;
output TClock;
output RClock;
output SyncOut;
input Syncln;
input Reset_;
input ColdReset_;
input ByPassPLL_;
input BigEndian_;
input DataRate_;
input [4:0] Int_;
input NMI_;
output [3:0] Status;
input JTDI;
input JTCK;
output JTDO;
input JTMS;

// Declarations needed for signals assumed to exist.
// These signals are required for proper functioning
// of various modules.
reg [63:0] gpr_in;
reg [4:0]gpr_addr;
reg gpr_write;
reg gpr_read;
wire [63:0] gpr_out;
wire clk;
reg [63:0] fpgr_in;
reg [4:0]fpgr_addr;
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reg fpgr_write;
reg fpgr_read;
wire [63:0] fpgr_out;
reg [143:0] d_cache_in;
reg [8:0]d_cache_addr;
reg d_cache_write;
reg d_cache_read;
wire [143:0] d_cache_out;
reg [23:0] d_tag_in;
reg [8:0]d_tag_addr;
reg d_tag_write;
reg d_tag_read;
wire [23:0] d_tag_out;
reg [287:0] i_cache_in;
reg [8:0]i_cache_addr;
reg i_cache_write;
reg i_cache_read;
wire [287:0] i_cache_out;
reg [22:0] i_tag_in;
reg [8:0]i_tag_addr;
reg i_tag_write;
reg i_tag_read;
wire [22:0] i_tag_out;
reg [63:0] IVA;
reg [63:0] DVA;
wire [31:0] DBus;
wire [31:0] Cache_data;
reg [3:0] Interrupts;
wire [20:0] I_PFN;
wire [20:0] D_PFN;
wire [4:0] Exceptions;
wire [3:0] Status;

// General purpose register module.
gpr gpr(gpr_in, gpr_addr, gpr_write, gpr_read, gpr_out, clk);

// FP general purpose register module.
fpgr fpgr(fpgr_in, fpgr_addr, fpgr_write, fpgr_read, fpgr_out, clk);

// PC, Hi, Lo, FCR0, FCR31 and LLbit register.

reg [31:0] prog_counter;
reg [31:0] Hi;
reg [31:0] Lo;
reg [31:0] FCR0;
reg [31:0] FCR31;
reg LLbit;

// Flush buffer. Refer to fig. 1-18.
reg [148:0] flush_buffer [0:1];
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// Data cache module.
d_cache d_cache(d_cache_in, d_cache_addr, d_cache_write, d_cache_read,

d_cache_out, d_tag_in, d_tag_addr, d_tag_write,
d_tag_read, d_tag_out, clk);

// Instruction cache module.
i_cache i_cache(i_cache_in, i_cache_addr, i_cache_write, i_cache_read,

i_cache_out, i_tag_in, i_tag_addr, i_tag_write,
i_tag_read, i_tag_out, clk);

// CP0 module.
wire [20:0] IFN;
wire [20:0] DFN;

cop0 cp0(IVA, DVA, DBus, Cache_data, Interrupts, IFN, DFN,
Exceptions, Status);

execution_unit exec_unit(Dbus, nReset, pClock, sys_inst, selecte);
pipeline_control pipe_ctrl (Dbus, nReset, pClock, sys_inst, selectp, control);

endmodule

Example 3-34. A structural model of R4200 processor with declarations and
instances at top-level

Example 3

In this example, we describe the input-outputs and top-level units of ultrasparcIIi. Figure 3-4
on page 82 depicts the block diagram. A single-chip implementation, UltraSparc Iii integrates
the following components:
- independently clocked PCI interface fully decoupled from main CPU

PCI bus module (PBM)
PCI I/O Memory management unit (IOM)
External cache control unit (ECU)
Memory controller unit (MCU)
16 KB instruction cache (ICU)
16 KB data cache (DCU)
prefetch, branch prediction and dispatch unit (PDU)
64 entry instrutcion translation lookaside buffer (ITB) and 64-entry data TLB (DTB)
integer execution unit (IEU)
Floating point and graphics unit (FGU)
Load and Store Buffer Unit (LSU)

module sparc_cpu (
devsel_1, frame_l,irdy_l, par, perr_l, stop_1,
trdy_l, tdata, tpar, ad, cbe_1, edata,
mem_data, edpar, p215clk, rmtv_sel, ad31z_en, clksel,
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clka, clkb, ext_event, pciclk, pci_ref_clk,
pllbypass, ram_test, spare, itb_test_mode, spare3v, sram_clk,
sram_clk_pos, sys_reset_tck, tdi, tms, trst_l,
upa_clk_neg, upa_clk_pos, p_reset_l, x_reset_l, p_reply, req_l,
int_num, sb_empty, ecache_2, adr_vld, doe_l, dsyn_wr_l,
epd, 15clk, mem_we_l, pmo, rst_l, sb_drain,
serr_l, stop_clock, tdo, toe_l, tsyn_wr_l,
xcvr_oea_l, xcvr_oeb_lxcvr_sel, mem_addr, ecat,
ecad, mem_cas_l, temp_sen, xcvr_rd_cntl,
xcvr_wr_cntl, ssysadr, s_reply, xcvr_clk
gnt_l, mem_rasb_l, mem_rast_l, bytewe_l
) ;

inout irdy_l;
inout par;
inout perr_l;
inout stop_l;
inout trdy_l;
inout [15:0] tdata;
inout [1:0] tpar;
inout [31:0] ad;
inout [3:0] cbe_l;
inout [63:0] edata;
inout [71:0] mem_data;
inout [7:0] edpar;

output p215clk;
input rmtv_sel;
input ad31z_en;
input clksel;
input clka;
input clkb;
input ext_event;
input pciclk;
input pci_ref_clk;
input pllbypass;
input ram_test;

input spare;
input itb_test_mode;
input spare3v;
input sram_clk_neg;
input sram_clk_pos;
input sys_reset_l;
input tck;
input tdi;
input tms;
input trst_l;
input upa_clk_neg;
input upa_clk_pos;
input p_reset_l;
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input x_reset_l;
input [1:0] p_reply;
input [3:0] req_l;
input [5:0] int_num;
input [1:0] sb_empty;
input ecache_22_mode;

input s_clk_mode;

output adr_vld;
output doe_l;
output dsyn_wr_l;
output epd;
output 15clk;
output mem_we_l;
output pmo;
output rst_l;
output sb_drain;
output serr_1;
output stop_clock;
output stop_clock;

output tdo;
output toe_I;
output tsyn_wr_l;
output xcvr_oea_l;
output xcvr_oeb_l;
output xcvr_sel_l;

output [12:0] mem_addr;
output [14:0] ecat;
output [17:0] ecad;
output [1:0] mem_cas_l;
output [1:0] temp_sen;
output [1:0] xcvr_rd_cntl;
output [1:0] xcvr_wr_cntl;

output [28:0] sysadr;
inout [28:0] sysadr;

output [2:0] s_reply;
output [2:0] xcvr_clk;
output [3:0] gnt_l;
output [3:0] mem_rasb_l;
output [3:0] mem_rast_l;
output [7:0] bytewej;

wire [19:0] UNCONN_ac;
wire [19:0] UNCONN_ac;
wire [15:0] UNCONN_b;
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wire ecu_13se;
wire

/* Data Management Unit */
sparcdmu dmu (

.dmu_utlb_inv_r0 (dmu_utlb_inv_r0),

. io_ec_edsyn0_r1 (io_ec_edsyn0_r1),

.io_ec_edsyn4_rl (io_ec_edsyn4_rl),

.dmu_13rsttrien (dmu_13rsttrien),

.dmu_spare_out (dmu_spare_out),

.dmu_13se (dmu_13se),

.lsu_any_misaligned_n 1 (lsu_any_misaligned_nl),

.lsu_flush_nl (lsc_flush_nl),

.lsu_ldd_nl (lsu_ldd_nl),

.ieu_trap_level (ieu_trap_level_vl),

.lsu_dmu_enable (lsu_dmu_enable),

.lsc_dmu_prefetch_c (lsc_dmu_prefetch_c)
);

/* External Cache Unit */
sparcecu ecu (

.zzz_asi_data2 (zzz_asi_data2[63:0]),

.clkctl_e_clk_en (clkctl_e_clk_en_v2_r0),

.ecu_scan_in (ex_scan_out),

.ecu_spare_in (ldbctl_spare_out),

. errorctl_scan_out (errorctl_scan_out),

.ieu_pstate_priv_v1 (ieu_pstate_priv_v1_r1),

.io_ec_edsyn ({io_ec_edsyn7_rl,io_ec_edsyn6_rl,
io_ec_edsyn5_rl io_ec_edsyn4_rl,
io_ec_edsyn3_rl,io_ec_edsyn2_rl, io_ec_edsynl_rl,io_ec_edsyn0_rl}),
.io_ec_tdata (io_ec_tdata[15:0]),
.iom_ecu_pa ({iom_ecu_pa[33:4], iom_ecu pa_3}),

.iom_ecu_pa_type (iom_ecu_pa_type),

.12clk (s_12clk_iobotvl),

.12clk_top (s_12clk_iobotvl),

.ldb_ec_atomic (ldb_ec_atomic),

. ldb_ec_cacheable (ldb_ec_cacheable),

.ldb_ec_pf (ldb_ec_pf),

.south_12rsttrien (south_12rsttrien),o_ec_edsyn 12_r0,
(imu_sprrpt_gnd_l), .lsc_jmpl_return_nl (lsc_jmpl_return_nl),
.lsc_dmu_prefetch_c (Isc_dmu_prefetch_c)
);

sparcex ex ( .movx_enable (movx_enable),
.movx_enable (movx_enable),
x_4_rptr_out (pbm_mcu_asi_csr_rl [2]),

......

............

....................

.....................

...........
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.ex_5_rptr_out (pbm_mcu_csr_addr_rl [0]),

.ex_6_rptr_out (pbm_mcu_csr_addr_rl [1]),
);

/* Floating an Graphics Unit */
sparcfgu fgu (

.fgu_0_rptr_out (mcuctl_mcu_io_upa_addr_18_rl),

.fgu2_lfeed_b_63 (zzz_asi_datal [62]),

.fgu2_lfeed_b_64 (zzz_asi_datal [63])
);

sparciblock iblock (
.recover_movx_stall_c (recover_movx_stall_c),
.w_12clk_ibk2 (w_12clk_ibk2),

.w_12clk_ibk5 (w_12clk_ibk5),

.w_12clk_ibk4 (w_12clk_ibk4)
);

/* Instruction Management Unit */
sparcimu imu (

.spr_io_obs_bus_rl (spr_io_obs_bus_rl[14:0]),

.imu_sprrpt_gnd_l (imu_sprrpt_gnd_l),

.imu_sprrpt_gnd_l (imu_sprrpt_gnd_l),

. imu_sprrpt_in_l_l ({8 {imu_sprrpt_gnd_l}}),

.spr_io_obs_bus_r0 (spr_io_obs_bus_r0[14:0]),

. io_ram_test_wr_ram (io_ram_test_wr_ram)
);

/* Buffers */
sparci_sb_iob iob (

.iob_rtm_in (iol_rtm_out),

.iob_rtm_out (iob_rtm_out),

.iob_rst_pin_en_in (iol_rst_pin_en_v2),

.iob_rst_pin_en_put (iob_rst_pin_en_out),

.io_misc_bidir (io_misc_bidir_r0[14:0]),

.clkctl_e_clk_en (clkctl_e_clk_en_v2_rl),

. io_ecache_22_mode (io_ecache_22_mode)
);

sparci_sb_iol iol (
.tdo (tdo),
.tck (tck),
.tms (tms),

.pbm_p212clk_iolb (pbm_p212clk_iolb),

.p2clk_en (clkctl_p_clk_en_v2_r0)

.......

...............

........

..........

...........................

......................

......................
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);

sparci_sb_ior ior (

.sysadr (sysadr[28:18]),

.p_reply (p_reply[l:0]),

.ior_ring_osc (ior_ring_osc),

.ior_scan_out (ior_scan_out)
);

sparci_sb_iot iot (
.mem_addr (mem_addr[12:0]),
.mem_data (mem_data[9:0]),
.xcvr_rd_cntl (xcvr_rd_cntl[1:0]),
.xcvr_wr_cntl (xcvr_wr_cntl[l :0]),

);

sparcldbctl Idbctl (
.lsu_raw_enq_nl_l (lsu_raw_enq_nl_l),
.lsu_stall_ll (lsu_stall_ll),

db_13clk (ldb_13clk)

.ldb_13clk (ldb_13clk)
);

sparcpadp padp (
.PADP_LFEED_R0) (PADP_LFEED_RO),

.dmu_13se (dmu_13se),

.dmu_13clk (dmu_13clk)
);

sparcrptr rptr (
.rptr_scan_in (rptr_scan_in),

.spare314_in ({{13{spare3_gnd}}, rmtv_sel_r0}),

.spare414_in ({{12{spare4_gnd}},
);

sparcpc pc (
.obs_tap_bus_0 (obs_tap_bus_0_l 1),

.ibk_13se_v4 (ibk_13se_v4),

.ibk_13clk_v4 (ibk_13clk_v4)

..............

................

......

............

...........

..............
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);

sparcrst rst (
.rst_reset_v 1 _r0 (rst_reset_v 1_r0),

.io_ec_sdb_ueh_r0 (UNCONN_eq),

.io_ec_sdb_uel_r0 (UNCONN_er)
);

sparcsbdp sbdp (
.io_edata ({io_edata_r2_v4[63:48],io_edata_r2[47:40],

.lsu_imu_enable (lsu_imu_enable_r0),

.sbdp_ram_test_out (sbdp_ram_test_out[7:0])
);

sparcsbdpctl sbdpctl (
.obs_tap_bus2_l3 (obs_tap_bus_2_l3),

.sbdpctl_spare_in (fgu_spare_out),

.sbdpctl_spare_out (sbdpctl_spare_out)
);

sparcstbctl stbctl (
.ec_data_index_sel (ec_data_index_sel[3:0]),

.ibk_13clk_v4 (ibk_13clk_v4),

.rmtv_sel (rmtv_sel_rl) );

sparcrst rst (
.rst_reset_v1_r0 (rst_reset_v1 _r0),

.io_ec_sdb_ueh_r0 (UNCONN_eq),

.io_ec_sdb_uel_r0 (UNCONN_er)
);

sparcsbdp sbdp (
.io_edata ({io_edata_r2_v4[63:48],io_edata_r2[47:40],

.sbdp_ram_test_out (sbdp_ram_test_out[7:0])

.sbdp_ram_test_out (sbdp_ram_test_out_r0[7:0]) );

sparcsbdpctl sbdpctl (
.obs_tap_bus2_l3 (obs_tap_bus_2_l3),

.sbdpctl_spare_out (sbdpctl_spare_out)

.sbdpctl_spare_out (sbdpctl_spare_out) );

..............

..............

..............

..............

...............

............

.............
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sparcstbctl stbctl (
.ec_data_index_sel (ec_data_index_sel[3:0]),

.ldb_13clk (ldb_13clk)

.ldb_13clk (ldb_13clk)
);

sparctap tap (
.tap_io_tdo (tap_io_tdo),

.tap_sprrpt_in_t_t ({mcu_io_upa_addr[17:0],
tap_inst_isr_r0,mcu_io_addr_valid,mcu_io_assrt_s_reply})

);

sparctr tr (
.ieu_done (ieu_done),
.ieu_retry (ieu_retry),

.rmtv_sel (rmtv_sel_rl)
);

sparcmisc_cen misc_cen (
.c_12clk_exl (c_12clk_exl),
.c_12clk_ex2 (c_12clk_ex2),

.rpt_in ({23{misc_cen_gnd}})
);

/* Phase Locked Loop */
sparcp_pll pll (

.11clk (11 clk),

.left_13clk_v2 (left_13clk_v2)

.left_13clk_v2 (left_13clk_v2)
);

/* Clock Control */
sparcclkctl clkctl (

.clkctl_spare_out (clkctl_spare_out),

.clkctl_spare_out (clkctl_spare_out),

.left_13clk_v2 (left_13clk_v2)

.left_13clk_v2 (left_13clk_v2)
);

/* Spare Dcache Control Unit */
sparcr_dcu dcu(

.din2 (Isu_tag2_din[29:0]),

.we2 (padp_tag2_we),

.tap_ram_wee_vl_r2(tap_ram_wee_vl_r2),

.............

.............

.............

.............

.............

.............
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.doutl ({dcu_dct_tagl[40:13],dcu_dct_validl[l:0]}),

.dout2 ({dcu_dct_tag2[40:13],dcu_dct_valid2[l :0]})
);

/* Spare Icache Control Unit */
sparcr_icu icu(

.din2 (Isu_tag2_din[29:0]),

.we2 (padp_tag2_we),

.tap_ram_wee_vl_r2(tap_ram_wee_vl_r2),

.doutl ({dcu_dct_tagl [40:13],dcu_dct_validl [1:0]}),

.dout2 ({dcu_dct_tag2[40:13],dcu dct valid2[l:0]})
);

sparcm_icrf corerf (
.iex_13rsttrien_v2 (iex_13rsttrien_v2),
.iex_13se_v2 (iex_13se_v2),

.iblock_cwp_valid_g (iblock_cwp_valid_g),

.spr_cwp_bypass_g (spr_cwp_bypass_g)
);

sparcg_13buf_v100 13buf (
.13clk (ldb_13clk),
.13clk(ldb_13clk),
.12clk (s_12clk_ldb)
);

/**** Memory and UPA Control unit Data PAth */
sparcmcudp mcudp (

.def_csr_mdp_data_mux_en    (def_csr_mdp_data_mux_en),

.mdp_miu_ecc_en (mdp_miu_ecc_en),

.mdp_mrwctl_simm_present (mdp_mrwctl_simm_present[4:0]) );

/**** Memory and UPA Control unit Control ***/
sparcmcuctl mcuctl (

.clkctl_s_clk_en (clkctl_s_clk_en_v2_r0),

.ecu_mcu_addr (ecu_mcu_addr[33:3]),

.vdb_wr_sel (vdb_wr_sel[7:0])     );

/* PCI Bus Module */
sparcpbm pbm (

.13clk (ldb_13clk),

.sbr_rst (rst_reset_v2),

.vdb_rd_sel (vdb_rd_sel[7:0]),

.............

.............

........

.............

.............

.............
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,vdb_wr_sel (vdb_wr_sel[7:0]) );

/* PCI Synchronization Module */
sparcpcisync pcisync (

.pcisync_iom_pa_gnt (pcisync_iom_pa_gnt),

.pcisync_ecu_pa_avail (pcisync_ecu_pa_avail),

.pcisync_pci_scan_in (pcisync_pci_scan_in),

.pcisync_cpu_scan_in (pcisync_cpu_scan_in)
);

/* Prefetch and Dispatch of Instructions */
sparcpdp pdp (

.pdp_mcu_pio_data (pdp_mcu_pio_data[63:0]),

.pdp_mcu_dma_data (pdp_mcu_dma_data[63:0]),

);

sparcpierst pierst (
.13clk (1db_13clk),
.13clk (1db_13clk),
.left_13clk_v2 (left_13clk_v2),

);

sparcpiect1 piect1 (
,pbm_pie_csr_rd_en (pbm_pie_csr_rd_en),

.piect1_1feed_t ({ex_20_rptr_in,.... })
);

/* Instruction Translation Lookaside buffer */
sparcr_itb itb (

. itb_data_out (itb_iom_data_out),

.tlb_hit (itb_iom_hit),

.cam_do (itb_iom_cam_do),

.comp_o (itb_iom_comp_o),

.itb_p213clk (itb_p213clk),

.so (itb_scan_out),

.west_12se (west_12se),

.tap_ram_wee (tap_ram_wee_v2),

.ex_p212clk_itb (ex_p212clk_itb),

. itb_scan_capture_ct1 (itb_scan_capture_ctl),

.itb_test_mode (io_itb_test_mode),

.itb_write_mode_ctl (itb_write_mode_ctl)
);

/* Data Translation Lookaside buffer */

.............

.............

...............

..............

...........................................
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sparcr_dtb dtb (
.itb_data_out (itb_iom_data_out),
.tlb_hit (itb_iom_hit),
.cam_do (itb_iom_cam_do),
.comp_o (itb_iom_comp_o),
.itb_p213clk (itb_p213clk),

.so (itb_scan_out),

.west_12se (west_12se),

.tap_ram_wee (tap_ram_wee_v2),

.ex_p212clk_itb (ex_p212clk_itb),

.itb_scan_capture_ctl (itb_scan_capture_ctl),

. itb_test_mode (io_itb_test_mode),

.itb_write_mode_ctl (itb_write_mode_ctl)
);

/* I/O and Memory managament unit */
sparciom iom (

.iom_ecu_pa (iom_ecu_pa[33:0]),
.iom_ecu_pa (iom_ecu_pa[33:0]),
.iom_ecu_pa_3 (iom_ecu_pa_3),
.iom_ecu_pa_type (iom_ecu_pa_type),
.iom_ecu_cacheable (iom_ecu_cacheable),

.iom_spare_in (iom_spare_in)

.iom_spare_in (pbm_spare_out)

);

sparcmid_buf mid_buf (
.11clk (11clk),
.pre_clk (pre_clk)
);

/* Instruction execution unit */
sparcieu ieu (

.clk (clk),

endmodule

Example 3-35. A structural model of UltraSPARC-IIi.

............................................

..............

......
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3.10.3.3 Module Instantiation Syntax

module_instantiation
::= module_identifier [parameter_value_assignment]

module_instance{ ,module_instance}

parameter_value_assignment
::= # ( expression{ ,expression}  )

module_instance
::= name_ of_ instance ( [list_of_module_connections] )

list_of_module_connections
::= ordered_port_connection{  , ordered _port_connection}
| named_port_connection{ ,named_port_connection}

ordered _port_connection
::= [expression]

named_port_connection
::= . port_identifier ( expression )

3.11 Exercises

1.

2.

Instantiate the two modules in Example 3-1 in a test module. Apply stimulus
and see the two modules give out exactly the same results. Use the Example 1-6
as a guideline to writing this test module.

Convert the following RTL description into a behavioral statement using case
statement.

module multiplexor(control, in1, in2, in3, in4, out);
input [1:0] control;
input in1, in2, in3, in4;
output out;

assign out = (control == 0) ? in1:
((control == 1) ? in2 :
((control == 2) ? in3 :
((control == 3) ? in4 :
'bx)));

endmodule

Given that a, b and c are declared as below:

reg [7:0] a, b; reg [8:0]c; reg [15:0] d;
Evaluate the following expressions:

i) a = 255; b = 255; c = a + b; /* Evaluate c */
ii) c = 9'b0 + a + b; /* Evaluate c */
iii)d={a,b};/* Evaluate d*/
iv) c = &b;

3.
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4.

Chapter 3

The barrel shifter in the Example 3-7 shifts or rotates by 1 bit. Modify the barrel
shifter to have a module port that contains the number of bits to be shifted. [You
will modify the module statement as well as the assign statement. Port
declarations will also be added for the new port]. Create a testbench for this, test
and obtain results.



4 SEMANTIC MODEL FOR
VERILOG HDL

4.1 Introduction

Verilog HDL provides a mechanism for specifying digital hardware precisely. This
specification can then be used for verification by a simulator, by a formal verification
tool, or for synthesis or timing analysis or any other process pertaining to the design.
The syntax of the language is defined precisely by a formal notation like BNF.
However, the semantics definition of a language does not have a formal notation
developed and usable in the realm of computer science. Thus, to help understand the
commonly understood semantics of a program in a language, some abstract models are
used. For Verilog HDL, this model for simulation has been defined to some extent in
the original definition and then by IEEE 1364. Here a model is provided based on the
original ideas that we had while designing and implementing the language.

This model is based on the notion of value-changes and evaluations and their
sequencing. The simulation can be thought of a series of value-changes on signals
(nets and regs) intermixed with evaluations of blocks of Verilog Code (that describe
circuit elements).
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4.2 Example

Chapter 4

For example, take an andor circuit where 2 and gates are connected to an or gate.
The Verilog model is given below:

module andor;
reg i1, i2, i3, i4;
and #2 a1 (o1, i1, i2), a2 (o2, i3, i4); or r1 (o3, o1, o2);
initial
begin : beh_block

$monitor("Sim Time=%d i1=%d i2=%d i3=%d i4=%d o1=%d o2=%d
o3=%d", $time,i1, i2, i3, i4, o1, o2, o3);

#25 i1 = l; #25 i2 = 0;
#25 i3=l ; #25 i4=l ;
#100 $finish;

end
endmodule

Example 4-1, A sample design with structure and behavior.

In this example, behavioral representation is used for stimulus and result
capturing, while gates are used to describe the design. The rules of semantics in a
behavioral block are the same whether it is used for test bench or design description,
and the explanation in the following sections will apply to examples containing
behavioral description of design.
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4.3 Simulation with Full Analysis

First, let us run this by single stepping through our simulator. We will also set
$monitor on all signals in the circuit. In some ways, the single stepping is stepping
through the sequence of evaluations. $monitor enables us to capture all value
changes. Thus, with these two traces, we can see some series of evaluations and
value-changes that makes the simulation run for a given Verilog model. Capturing
this in a log file and visiting this later also gives us the insight into what is
happening in the simulation cycles that lead to the whole simulation. Here we list an
ideal log file while running on your favorite simulator will typically produce a subset
of this information. The log file on a sample simulator is also shown for comparison.

4.4 Log of a Typical Simulator

VeriWell for Win32 HDL <Version 2.0.5> Wed Jul 03 14:23:31 1996

Compiling source file : EX_SIMMD.V
No errors in compilation
Top-level modules:
andor

C1>.
L6 "EX_SIMMD.V" (andor): INITIAL
L7 "EX_SIMMD.V" (andor): BEGIN
L9 "EX_SIMMD.V" (andor): $monitor ("Sim Time-d i1=d i2=d i3=d i4=d

o1=d o2=d o3=d", $time (), i1, i2, i3, i4, o1, o2, o3)
L7 "EX_SIMMD.V" (andor): #25
L3 "EX_SIMMD.V" (andor): WIRE o1 >>> NET = 1'hx, 0
L3 "EX_SIMMD.V" (andor): WIRE o2 >>> NET = 1'hx, 0

//----------------------------------------------------------------------------------

slide 5
L4 "EX_SIMMD.V" (andor): WIRE o3 >>> NET = 1'hx, 0
SimTime= 0 i1=x i2=x i3=x i4=x o1=x o2=x o3=x
SIMULATION TIME IS 25
L7 "EX_SIMMD.V" (andor): #25 »> CONTINUE
L10 "EX_SIMMD.V" (andor): i1 = 1;
Sim Time= 25 i1=1 i2=x i3=x i4=x o1=x o2=x o3=x
L10 "EX_SIMMD.V" (andor): #25
SIMULATION TIME IS 50
L10 "EX_SIMMD.V" (andor): #25 >>> CONTINUE
L11 "EX_SIMMD.V" (andor): i2 = 0;
Sim Time= 50 i1=1 i2=0 i3=x i4=x o1=x o2=x o3=x
SIMULATION TIME IS 52
L3 "EX_SIMMD.V" (andor): GATE >>> 1'b0
L11 "EX_SIMMD.V" (andor): #25
L3 "EX_SIMMD.V" (andor): WIRE o1 >>> NET = 1'h0, 0
Sim Time= 52 i1=1 i2=0 i3=x i4=x o1=0 o2=x o3=x
SIMULATION TIME IS 75
L11 "EX_SIMMD.V" (andor): #25 >>> CONTINUE
L12 "EX_SIMMD.V" (andor): i3 = 1;

..................
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Sim Time= 75 i1=1 i2=0 i3=1 i4=x o1=0 o2=x o3=x
L12 "EX_SIMMD.V" (andor): #25
SIMULATION TIME IS 100
L12 "EX_SIMMD.V" (andor): #25 >>> CONTINUE
L13 "EX_SIMMD.V" (andor): i4= 1;
Sim Time= 100 i1=1 i2=0 i3=1 i4=1 o1=0 o2=x o3=x
SIMULATION TIME IS 102
L3 "EX_SIMMD.V" (andor): GATE >>> 1'b1
L13 "EX_SIMMD.V" (andor): #100
L3 "EX_SIMMD.V" (andor): WIRE o2 >>> NET = 1'h1, 1
L4 "EX_SIMMD.V" (andor): GATE >>> 1'b1
slide 6 part 1
L4 "EX_SIMMD.V" (andor): WIRE o3 >>> NET = 1'h1, 1
Sim Time= 102 i1=1 i2=0 i3=1 i4=1 o1=0 o2=1 o3=1
SIMULATION TIME IS 200
L13 "EX_SIMMD.V" (andor): #100 >>> CONTINUE
L14 "EX_SIMMD.V" (andor): $finish
Exiting VeriWell for Win32 at time 200
......  Thank you for using VeriWell for Win32

Example 4-2. Log of a typical simulator with tracing.

4.5 Log of an Ideal Simulator

The ideal log file that will take us through the tour of a event driven simulation run
of Verilog HDL for the example is provided below:

IDEAL SIMULATION LOG FOR andor circuit with tracing and monitor
EVENT DRIVEN SIMULATION ENGINE OF VERILOG HDL

EXPLAINED
Top-level modules:

andor

L6 "EX_SIMMD.V" (andor): EVALUATE beh_block - INITIAL
L7 "EX_SIMMD.V" (andor): EVALUATE beh_block - BEGIN : beh_block
L9 "EX_SIMMD.V" (andor): EVALUATE beh_block - $monitor

("Sim Time=d i1=d
i2=d i3=d i4=d o1=d o2=d o3=d", $time (), i1, i2, i3, i4, o1, o2, o3)

L10 "EX_SIMMD.V" (andor): #25 >>> SUSPEND beh_block
[for 25 time units]

Sim Time= 0 i1=x i2=x i3=x i4=x o1=x o2=x o3=x
Finished Activity at time 0; Look for next time of activity; Advance

time to 25

SIMULATION TIME IS 25
L10 "EX_SMMD.V" (andor): #25 >>> CONTINUE [EVALUATION

of beh_block]
L10 "EX_SIMMD.V" (andor): i1 = 1;
Sim Time= 25 i1=1 i2=x i3=x i4=x o1=x o2=x o3=x

----------------------------------------------------------------------------------

----------------------------------------------------------------------------------
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L11 "EX_SIMMD.V" (andor): #25 >>> SUSPEND beh_block
[for 25 time units]

Finished Activity at time 25; Look for next time of activity;
Advance time to 50

SIMULATION TIME IS 50
L11 "EX_SIMMD.V" (andor): #25 >>> CONTINUE
L11 "EX_SIMMD.V" (andor): i2 = 0;

EVALUATE $monitor and SCHEDULE for end of time
L3 "EX_SIMMD.V" (andor): EVALUATE GATE a1 >>> 1'b0

SCHEDULE Value Change on o1 for time=52
L9 EVALUATE $monitor (and display values)
Sim Time= 50 i1=1 i2=0 i3=x i4=x o1=x o2=x o3=x
Finished Activity at time 50; Look for next time of activity; Advance

time to 52

SIMULATION TIME IS 52
L12 "EX_SIMMD.V" (andor): #25>>>EVALUATE and SUSPEND

[SCHEDULE] beh_block [for 25 time units]
L3 "EX_SIMMD.V" (andor): UPDATE Value Change WIRE o1 >>>

NET = 1'h0, 0
Sim Time= 52 i1=1 i2=0 i3=x i4=x o1=0 o2=x o3=x
Finished Activity at time 52; Look for next time of activity; Advance

time to 75

SIMULATION TIME IS 75
L12 "EX_SIMMD.V" (andor): #25 >>> CONTINUE [EVALUATE

beh_block]
L12 "EX_SIMMD.V" (andor): i3 = 1;
Sim Time= 75 i1=1 i2=0 i3=1 i4=x o1=0 o2=x o3=x
L13 "EX_SIMMD.V" (andor): #25 >>>EVALUATE and SUSPEND

[SCHEDULE] beh_block[for 25 time units]
Finished Activity at time 75; Look for next time of activity; Advance

time to 100

SIMULATION TIME IS 100
L13 "EX_SIMMD.V" (andor): #25 >>> CONTINUE[EVALUATE

beh_block]
L13 "EX_SIMMD.V" (andor): i4 = 1;
L3 "EX_SIMMD.V" (andor): EVALUATE GATE a2 >>> 1'b1

Sim Time= 100 i1=1 i2=0 i3=1 i4=1 o1=0 o2=x o3=x

Finished Activity at time 100; Look for next time of activity; Advance
time to 102

SIMULATION TIME IS 102

L14 "EX_SMMD.V" (andor): #100 >>>EVALUATE and SUSPEND
[SCHEDULE] beh_block [for 100 time units]

L3 "EX_SIMMD.V" (andor): UPDATE Value Change WIRE o2 >>>
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NET=1'h1, 1
L4 "EX_SIMMD.V" (andor): EVALUATE GATE r3 >>> 1'b1

SCHEDULE Value Change on o3 for time=102
L4 "EX_SIMMD.V" (andor): UPDATE Value Change WIRE o1 WIRE o3

>»NET=1'h1, 1
Sim Time= 102 i1=1 i2=0 i3=1 i4=1 o1=0 o2=1 o3=1
Finished Activity at time 102; Look for next time of activity; Advance

time to 200

SIMULATION TIME IS 200
L14 "EX_SIMMD.V" (andor): #100 >>> CONTINUE[EVALUATE

beh_block]
L14 "EX_SIMMD.V" (andor): $finish
Exiting Verilog Simulator at time 200

Normal exit
Thank you for using the Digital Design with Verilog Hardware Description Language

Example 4-3. Ideal simulation log for a sample circuit with tracing.

4.6 Analysis and Concepts in Event-Driven Simulation in Verilog

In the ideal simulation log, we see that the whole simulation is a sequence of
Evaluate, Schedule, and Update Activities. Simulation starts at time 0 when, the
model performs evaluations of all initial and always blocks. The evaluation of a
block continues this until it suspends (or schedules itself) for a later time. During the
course of this evaluations, value changes on reg variables are effected and their
fanouts are evaluated or are scheduled for evaluations. For example, change in i1 in
the beh_block due to assignment statement evaluation results in valuation of a gate
a1. This may or may not result in further value changes to be scheduled.

4.7 Internal Data Structure Representation

Internally, during simulation, a Verilog HDL model is represented by a set of
signals, a set of evaluation blocks and their inter-connections. This can be called the
network data structure. In the above diagram, the rectangles represent the evaluation
blocks and the ellipses represent the signals. The names of these are given inside and
these correspond to the names in the design. Coupled with this is the event queue
data structure that now enables us to see throughout this event driven simulation
cycle in Verilog HDL.

4.8 Update and Evaluate Events

As seen before, the activity in Verilog Simulation consists of Evaluate Blocks and
Update Values. This is reflected in two types of events in the event queue (also
known as scheduler)—Update Event and Evaluate Events. In a model known as 2
pass model, the types of events are held in separate lists and are processed in two
passes—the first pass for update and second for evaluate.
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Network data structure for the module andor

4.9 Order of Execution of Events in Verilog

For parallel blocks, no order is defined. Each initial and always block, continuous
assignments, structural gates, udp instances, and transistors form parallel blocks in
Verilog. A simulator can choose an order in any manner for all events that are
scheduled to happen at the same time. [Special events like $monitor are processed as
the last set of events or a given time and are exception to the above.]

Sometimes a Verilog description can produce different results based on which
block or process is executed first. This happens when multiple processes update a
reg at the same time with no interdependence. This results in non-determinism OR
different results on different simulators or in different simulation runs on the same
simulator. This is a feature of Verilog HDL unlike VHDL where the results are
always deterministic. A simple example of non-determinism is as follows:

initial
#5
rega = 1;
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initial
#5
rega = 0;

initial
#6 $display(“rega at time = %d is %d”, $time, rega);

/*
The above may result in 1 or 0 depending on the simulation run and the simulator

tool */.

4.10 Algorithm for Event-Driven Model for Verilog HDL

4.10.1 Definitions

Signal – A declared data type in Verilog that can hold a value.

This can be a driver on a net (of any type like tri, triand etc.) or a net or a
reg, an integer, a real or time type.

Process or Evaluation Block – A basic unit of evaluation in Verilog. This can be a
behavioral block or its sub-part, a structural unit like gate or rtl unit like ‘assign’
statement.

Verilog objects – Signals and Evaluation Blocks form basic Verilog objects which
form units of activity in the Verilog model.

Event – The atomic unit of activity in Verilog HDL semantic model. An event has
the following three attributes associated with it: time, type, and an object. The
activity that defines the event can be of the following two types (making the event
type).

Update Event – The activity indicating a value change on a signal.

Evaluation Event – The activity indicating evaluation of a block (process).

Schedule – List of all events in the Verilog model at any time.

Network Representation of Verilog – A network consisting of Evaluation Blocks,
Signals and their interconnections is a mapping from a given Verilog description.

More on the effects of evaluation events.
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Evaluation a basic block results in one or more of the following:
1.

2.
3.
4.

update values of non-net types
schedule an update event on a net or a non-net type
schedule an evaluation event

change the interconnections in the network

4.10.2 Algorithm

Start:
{

Create a network representation of Verilog description. Set current time to 0. Schedule
evaluation events on all behavioral blocks for current time and update events for all UDP
outputs with initial state.
}
while ((events in schedule( and (no $finish))
{

if (no events in schedule at current time)
advance time to next event time in the schedule

while (events at current time)
{

fetch next event in the schedule
process event (either evaluation or update)
remove this event from schedule

}
}

Figure 4-4. Algorithm for Verilog Model Execution
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process_events:
{

if (event is of type update)
{

update value of an object
while (fanout blocks of event object signal)
{

Schedule Evaluation Event with block as object.
If block is behavioral also remove it from fanout list.

}
}
else if (event is of type evaluate)
{

if (event object evaluation block is structural or RTL)
evaluate and schedule an update event on output net or net-driver

else
start processing statements in behavioral block

}
}

Figure 4-5. Algorithm for Processing an Event

schedule_event:

{
if (event type is update)
{

if (event object changed due to behavioral non-blocking statement)
insert event in the schedule at end of the list at the appropriate
time
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else
If an event already exists on this signal then

if the value on the existing event same as new event,
if yes, check the time on the existing event.

if earlier than new event then done;
else

reschedule for the new time, then done
else

deschedule the existing event and insert the new event
else

insert event at the appropriate time in the schedule.
}
else
if (evaluate block is of type monitor)
{

insert event at the end of the current simulation time.
}

}

Figure 4-7. Algorithm for Scheduling an Event

Note: Events from non-blocking assignments and $monitor statements must be
maintained at the end of the lists at any time in the schedule during all
scheduling.

4.11 Highlights of the Algorithm – Concurrent Processes and Event
Cancellations

Concurrent Processes

Hardware consists of different design units that always run concurrently. For
example, in a computer, CPU, memory, peripheral boards like the IO controllers
(floppy disk controller), hard disk controller are always running in parallel. The
states of some units may imply waits but they will be providing certain outputs as a
function of inputs and current state, independent of other units. A hardware
description language must model this behavior correctly. In the above algorithm, we
can clearly see that all the always blocks and the initial blocks in the behavioral
description of the Verilog model are executed concurrently. Similarly, the gates,
module instances, UDPs and the RTL assignments are continuously providing the
outputs as a function of inputs. In an event-driven model, this translates into creating
an evaluation event on the evaluation blocks whenever one of the inputs changes.
This again can be seen in the above algorithm.

In terms of the network-data structure, all the rectangles representing the
evaluation blocks are executing concurrently. Events may be present on one or all of
them at the same time within the schedule. The following two examples illustrate the
inertial delay model followed in general in Verilog and described in the algorithm
above.

4.11.1
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module m;
wire out;
reg in1, in2;

assign #5 out = in1 | in2;
initial
begin

$monitor("Time = %d out = %d in1=%d in2=%d", $time, out,
in1, in2);
$dumpfile("ex4_2.dmp");

$dumpvars;
// $gr_waves(out, in1. in2);
#1

in1 = 1;
#2
in2 = 1;
#10
$finish;

end
endmodule

Example 4-4. Multiple events on a reg – but no cancellation (algorithm
4-7 applied)

Running this produces the following results:

C1>.

Time = 0 out = x in1=x in2=x

Time = 1 out = x in1=1 in2=x

Time = 3 out = x in1=1 in2=1

Time = 6 out = 1 in1=1 in2=1
When multiple changes happen on inputs before output actually changes, event

cancellation mechanism comes into play.
Thus, the event created at time for out to change to 1 does not get descheduled at

time 3 as the new value of out is consistent with the scheduled value. However, in
the following example, for the and gate, new value is different and the event is
canceled and replaced with a new event with a different output value and different
time of change.

4.11.2 Event Cancellations

module m;
wire out;
reg in1, in2;

assign #5 out = in1 & in2;
initial
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begin
$monitor("Time = %d out = %d in1=%d in2=%d", $time, out, in1,
in2);
$dumpfile("ex4_2.dmp");
$dumpvars;
// $gr_waves(out, in1, in2);
#1
in1 = 1;
#2
in2 = 1;
#2
in1 = 0;
#10
$finish;

end
endmodule

Example 4-5. Multiple events on a reg resulting cancellation
(algorithm 4-7 applied)

In this example, at time 3 units, an event gets created on out to change at 8 time
units. This event gets canceled at time 5 units when in1 changes to 0. A new event
for out to change at 10 is created to change to 0. Here the new value of out computed
at time = 5 units is different from the scheduled value and thus, we see event
cancellation. This is generally known as inertial delay model. The transport delay
model is supported in Verilog by use of non-blocking assignments as explained in
the next chapter.

C1>.
Time = 0 out = x in1=x in2=x

Time = 1 out = x in1=1 in2=x

Time = 3 out = x in1=1 in2=1

Time = 5 out = x in1=0 in2=1

Time = 10 out = 0 in1=0 in2=1

Exiting VeriWell for Win32 at time 15
In the above algorithm, in the processing of events (Figure 4-5), events may or

may not get descheduled and rescheduled when an event already exists on the signal.
This depends on the new value and the scheduled value. In Verilog, typically only
one event can be present on a net or a reg at a time. Exceptions to these are events
arising out of non-blocking assignments.
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4.12 Exercises

1. Obtain the simulation log for the following Verilog module using ‘step and
trace’ OR with ‘trace on’ option. Modify this log using the semantic model to
obtain the ideal simulation log in terms of ‘EVALUATE EVENTS, UPDATE
EVENTS, SCHEDULE and STATEMENT EXECUTION’ primitive steps as in
Examples 4-2 and 4-3 in the book.

module mixed_sim;
// This is a part of bigger circuit that drives the bus

// This is modeled with mixed structure, rtl and behavior
reg dcontrol, x; y;
reg [31:0] data; wire [31:0] bus;
assign bus = dcontrol ? data : 'bz;
always @x

y = ~x;

initial
begin

$monitor("time=%d dcontrol=%d data=%d x=%d y=%d bus=%d",
$time, dcontrol, data, x, y, bus);

dcontrol = 0;
#10 data = 15;
#10 x = 0;
#10 dcontrol = y;
#10;

end
endmodule



5 BEHAVIORAL MODELING

5.1 Overview of Behavioral Modeling

5.1.1 Introduction

This is the next level of abstraction after RTL. This allows modeling algorithmic
style descriptions. Naturally, we need the ability to capture the algorithms like in a
programming language. This is provided with "C"-like statements—assignments, if-
else, case, for (loop), begin-end blocks, functions and procedures (tasks). In an HDL,
as seen in the structural and RTL descriptions, the flow of control is multiple.
Verilog is essentially a Concurrent Programming Language. This implies that we
need a mechanism to synchronize the algorithmic descriptions together with the
structural and RTL descriptions. This is provided by 'initial' and 'always' blocks that
enclose all algorithmic descriptions. Within each of these blocks, timing controls or
synchronization primitives are provided in terms of delays, event controls, fork-join
statements, and wait statements.

The algorithmic descriptions are also called sequential blocks and the statements
are termed sequential statements. This does not imply that these are sequential
designs—the term originates from 'in sequence' or 'in order'. No storage is implied in
these descriptions. The top level blocks are the initial and the always blocks in the
behavioral descriptions. The tasks and function declarations also occur at the same
top level in a module. Inside each of these, there are procedural assignments, if-else,
case, loops, begin-end blocks, fork-joins, functions and task calls, and few other
assignments ‘assign’, ‘deassign’, ‘force’ and ‘release’.
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5.1.2

module clock(clock);
output clock;
initial

clock = 0;
always

#100 clock = ~clock;
endmodule

Behavioral clock generation.

In the Example 5-1, clock is generated behaviorally. One initial and one always
block is used.

5.1.3 Syntax

As seen in section 3.2.3, behavioral descriptions are of four types—initial, always,
tasks, or functions. The tasks and functions are explained in section 5.10. The initial
and always are expanded as follows:

initial_construct
::= initial statement

always_ construct
::= always statement

statement_or_null
::= statement
| ;

statement
::=blocking assignment;
| non-blocking assignment;
| procedural_continuous_assignment
| procedural_timing_control_assignment
| conditional_statement
| case_statement
| loop_statement
| wait_statement
| disable_statement
| event_trigger
| seq_block
| par_block
| task_enable
| system_task_enable

Each of these above will be explained in the sections in this chapter.

Examples

Example 5-1.
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Procedural Assignments

Overview

These allow transfer of values from an expression into a non-net 1value. All
algorithmic descriptions can be thought of as temporary computations whose results
can then be put onto physical entities like nets via RTL or gate descriptions that are
closer to physical reality. Thus, the original intent of behavioral level HDL is to
allow expressing your ideas into a precise form whose results can be easily
transferred to the RTL and structural level for ease of development. This will allow
stepwise refinement of your model from a higher level description into gates. All
non-net constructs (reg, integers, reals, time and any aggregate of these) are abstract
and there are different ways to actualize these into hardware. Synthesis has some role
to play here, but in reality, a very small subset of the behavioral level is synthesized
by logic synthesis and some larger subset by behavioral synthesis.

The procedural assignments are of blocking and non-blocking kind and they are
overridden by quasi-continuous assignments ‘assign’ and ‘deassign’ which in turn
can be overridden by ‘force’ and ‘release’ statement.

Blocking (Immediate) Procedural Assignments5.2.2

5.2.2.1 Examples
// This is an example of blocking assignments

initial
begin

rega = 2;
regb = 3;
#5;
rega = 0;
regb= 1;
regc = regb+rega;
#5;

$display(regc);
end

Example 5-2. Blocking assignments – inter-assignment delays

In this example, the assignment to regc happens after assignments to rega and
regb are complete at time 5 units. The previous assignments to rega and regb at time
0 are overridden with the assignments at time 5 before the right-hand side expression
for assignment to c is computed. This implies that regc gets a value of 1 and is
displayed as such at time of 10 units. This is in contrast with the Example 5-4 where
the non-blocking assignments take place in a deferred manner. The delays of 5 time
units ocurring twice in this example are between the assignments and block the flow
of control of this behavioral block (or process) for 5 time units each. This is in

5.2

5.2.1
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contrast to intra-assignment delays explained later. There is no scheduling activity
involved in the blocking assignments.

// This is another example of blocking assignment
// Compare with similar looking example for blocking
// assignments in previous section.
// This shows delays are not blocking the flow of control

initial
begin

rega=#5 2;
$display($time, rega, regb);
regb=#5 3;
$display($time, rega,regb);
#6
$display($time, rega,regb);
#5
$display($time, rega,regb);

end

/* This will result in
5 2 x
10 2 3
16 2 3
21 2 3
*/

Example 5-3. Blocking Assignment – intra-assignment delays.

In the above example, the delays are present inside the assignment statement
which implies that they are intra-assignment delays as opposed to the inter-
assignment delays of Example 5-2.

5.2.2.2
blocking assignment

::= reg_1value = [delay_or_event_control] expression ;

5.2.3 Non-Blocking Procedural Assignments

5.2.3.1 Introduction – When modeling states in a sequential block, the IOs of a
block may be used both on the right- and left-hand side of assignments. The right-
hand side would then be from previous state while the left-hand side will get the new
value in this state. This kind of modeling is not possible with blocking assignments
and the concept of non-blocking assignment is introduced.

To allow modeling whereby a state of the system is captured at a delta cycle time
and then all values are determinable by the delta cycle of the simulator, notion of
non-blocking procedural assignments was introduced in later versions of Verilog.
Thus, use blocking assignments for temporary computations within a delta cycle for

Syntax



103BEHAVIORAL MODELING

those regs that are not directly transformed to hardware registers. This (non-
blocking) type of assignment is a better model for most real registers when modeling
synchronous systems. However, by following certain consistent conventions
throughout Verilog model, one can use the blocking assignments which are more
efficient for simulation and which are easier to understand.

Examples5.2.3.2

// This is an example of non-blocking assignments
// Compare with similar looking example for blocking

// assignments in previous section
initial
begin

rega <= 2;
regb <= 3;
#5;
rega <= 0;
regb<= 1;
regc <= regb+rega;
#5;
$display(regc);

end

Example 5-4. Blocking assignments – interassignment delays.

In this example, the assignment to regc happens with the right-hand side
computed before new assignments to rega and regb are complete at time 5 units. The
previous assignments to rega and regb at time 0 are used for computing assignment
to c at time 5. This implies that regc gets a value of 1 and is displayed as such at time
10 units. This is in contrast with the previous Example 5-2 where the blocking
assignments take place immediately and regc gets a value of 5.

// This is an example of non-blocking assignments
// Compare with similar looking example for blocking

// assignments in previous section. This shows
// delays are not blocking the flow of control

initial
begin

rega<=#5 2;
$display($time, rega, regb);
regb<=#5 3;
$display($time, rega,regb);
#6
$display($time, rega,regb);
#5
$display($time, rega,regb);

end

/* This will result in displaying values
0 x x
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0 x x
6 2 3
1123

*/

Example 5-5. Blocking assignments – intra-assignment delays.

5.2.3.3 Syntax
non-blocking assignment

::= 1value = expression
| 1value = delay_or_event_control expression ;

delay_or_event_control
::= delay _control
| event_control
| repeat ( expression ) event_control

5.2.4 Examples Comparing Blocking and Non-Blocking Assignments

5.2.4.1 Example 1
module evaluates3(out); //The simulator evaluates

output out; // right-hand side of the
reg a, b, c; // non-blocking assignments and

// schedules the assignments of
initial
begin // the new values at posedge c.

a = 0;
b = 1; // Step 2 : At posedge c,the simulator
c = 0; // updates the left-hand side of

end // each non-blocking assignment
// statement.

always c = # 5 ~c;

always @ ( posedge c )
begin: exch_block

a <= b; // evaluates, schedules
b <= a; // and executes in two steps

end

//simulation control section
initial
begin

$monitor("$time=%d a=%d b=%d c=%d", $time, a, b, c);
#30 $finish;

end
endmodule
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This displays the following results:

$time= 0 a=0 b=1 c=0
$time= 5 a=1 b=0 c=1
$time= 10 a=1 b=0 c=0
$time= 15 a=0 b=1 c=1
$time= 20 a=0 b=1 c=0
$time= 25 a=1 b=0 c=1

Example 5-6. Blocking and non-blocking comparison – exchange of values
for blocking.

5.2.4.2 Example 2 – On replacing the non-blocking assignments in Example 1 above
by blocking assignments, we obtain the following code for exch_block.

always @ ( posedge c )
begin: exch_block

a = b; // evaluates, schedules
b = a; // and executes in two steps

end

On running the module evaluate3 with this change, following result is obtained:

$time= 0 a=0 b=1 c=0
$time= 5 a=1 b=1 c=1
$time= 10 a=1 b=1 c=0
$time= 15 a=1 b=1 c=l
$time= 20 a=1 b=1 c=0
$time= 25 a=1 b=1 c=1

Example 5-7. Blocking and non-blocking comparison – no exchange of
values for blocking.

5.2.4.3 Example 3 – This example illustrates a special feature of non-blocking
assignments—ability to do multiple scheduling.

module multiple;
reg  r1;
reg [ 2 : 0 ] i;

initial begin
$monitor("time=%d, i=%d r1 = %d", $time, i, r1);
// starts at time 0, doesn't hold the block
r1=0;
// make assignments to r1 without canceling previous assignments
for ( i = 0; i <= 5; i = i+1 )
r1<=#(i*10)i[0];
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end
endmodule

This produces following output:

time= 0, i=6 r1 = 0
time= 10, i=6 r1 = 1
time= 20, i=6 r1 = 0
time= 30, i=6 r1 = 1
time= 40, i=6 r1 = 0
time= 50, i=6 r1 = 1

Example 5-8. Non-Blocking assignments – support of multiple schedules.

5.2.4.4 Example 4 - Here we take the Example 3 above and replace the non-
blocking with a blocking assignment.

module multiple;
reg r1;
reg [2:0]i;

initial begin
$monitor("time=%d, i=%d r1 = %d", $time, i, r1);
// starts at time 0, doesn't hold the block
r1= 0;
// make assignments to r1 without canceling previous assignments
for ( i = 0; i <= 5; i = i+1 )

r1 = # (i*10) i[0];
end

endmodule

Running this produces the following output:

time= 0, i=1 r1 = 0
time= 10, i=2 r1 = 1
time= 30, i=3 r1 = 0
time= 60, i=4 r1 = 1
time= 100, i=5r1= 0
time= 150, i=6r1 = 1

Example 5-9. Blocking assignments – no multiple schedules.
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5.3 Conditional Statement

5.3.1 Overview

This statement allows execution of code based on evaluation of a condition as in the
following form:

if (condition)
statement;

else
statement;

Examples5.3.2

if (index >0)
if (rega > regb)

result = rega;
else

result = regb;

Example 5-10. If statement example.

if(index > 0)
begin

if (rega > regb)
result = rega;

end
else

result = regb;

Example 5-11. Nested if statement.

5.3.3 Syntax

conditional_statement ::=
if (expression) statement_or_null
| if (expression) statement_or_null else statement_or_null

5.3.4 Special Considerations

Nesting rules apply to if statements as if statements can occur within other if
statements and along with else statements. In general, if statement is just like any
other statement and can be present in the statement part in the above syntax.
Multiple mutually exclusive conditions can be modeled using 'if' immediately after
else at the same level. Only a difference in indentation adds clarity to such
descriptions.
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if (c1)
a1;

else
if (c2)

a2;
else
if (c3)

Example 5-12. If-else-if mutually exclusive multiple conditions.

5.4 Case Statement

5.4.1 Overview

When a condition or a value of a value of a variable is checked against several
alternatives and different actions taken, then case statement is the construct to use.
Comparisons go from top to bottom (first to last). Unlike "C", overlap of case-values
is allowed and the order of evaluation is important.

5.4.2 Examples

module m(a,b,c,d, select, mux);
input a, b,c,d;
input [1:0] select;
output mux;
reg mux;

always@({a,b,c,d,select})
case (select)

2'b00: mux = a;
2'b01: mux = b;
2'b10: mux = c;
2'b11: mux = d;

default: mux = 'bx;
endcase
endmodule

Example 5-13. Case statement – a multiplexor model.

5.4.3 Syntax

case_statement::=
case (expression) case_item {case_item} endcase
| casez (expression) case_item {case_item} endcase
| casex (expression) case_item {case_item } endcase
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5.4.4 Don't Cares and Case Statements – Casex and Casez

Special statements which use keywords casex and casez are provided in Verilog for
special treatment to comparisons of x and z values. After evaluation of case operand,
in comparison to the case-values, x/z on either side is a don't care (true) condition.
Usage of these constructs is made in logic synthesis for optimizations and these have
been added to Verilog HDL as enhancements to facilitate the development of popular
synthesis tools. The more don't care conditions one can specify to a synthesizing
compiler, the better job synthesizer is going to do as known by the optimization
techniques.

5.4.5 Examples Comparing Case, Casex, and Casez

5.4.5.1    Case Example
module m;

reg sig;
always @(sig)
case (sig)

1'bx : $display ("signal is unknown");
1'bz: $display ("signal is floating");
default: $display ("signal is %b", sig);

endcase
initial
begin

$monitor("time=%d sig=%b",$time, sig);
#10 sig = 0,
#10 sig = 1;
#10  sig = 'bz;
#10  sig = 'bx;

end
endmodule

The above will result in :
time= 0 sig=x
signal is 0
time= 10 sig=0
signal is 1
time= 20 sig=1
signal is floating
time= 30 sig=z
signal is unknown
time= 40 sig=x

Example 5-14. Case statement with unknowns and tri-states.
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5.4.5.2 Case Example
module m;

reg sig;
always @(sig)
casez (sig)

1'bx: $display ("signal is unknown") ;
1'bz: $display ("signal is floating") ;
default: $display ("signal is %b", sig) ;

endcase
initial
begin

$monitor("time=%d sig=%b",$time, sig);
#10 sig = 0;
#10 sig = 1;
#10 sig = 'bz;
#10 sig = 'bx;

end
endmodule

This will result in :
time=                    0 sig=x
signal is floating
time=                  10 sig=0
signal is floating
time= 20 sig=1
signal is unknown
time= 30 sig=z
signal is unknown
time= 40 sig=x

Example 5-15. Casex statement with unknowns and tri-states.

5.4.5.3 Case Example
module m;

reg sig;
always @(sig)
casex (sig)

1 'bx : $display ("signal is unknown") ;
1 'bz : $display ("signal is floating") ;
default: $display ("signal is %b", sig) ;

endcase
initial
begin

$monitor("time=%d sig=%b",$time, sig);
#10 sig = 0;
#10 sig = 1;
#10 sig = 'bz;
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#10 sig = 'bx;
end

endmodule

This will result in:
time=                    0 sig=x
signal is unknown
time= 10 sig=0
signal is unknown
time= 20 sig=1
signal is unknown
time= 30 sig=z
signal is unknown
time= 40 sig=x

Example 5-16. Case statement with unknowns and tri-states.

5.5

5.5.1

Looping constructs allow modeling of repetitive behavior. There are four kinds of
looping constructs in Verilog: for, while, forever and repeat. The for, repeat and
while loops are similar to those in programming language but forever has notion of
time. The for statement provides for initial value of loop variable, an increment on
each loop and an exit condition. The repeat statement specifies the repeat count and
the while statement loops on a condition specified after keyword while. The forever
statement is like always, but can also be used within block. An initial immediately
followed by forever is identical to always. Fork-join blocks may have a forever but
not always inside them.

5.5.2 Examples

FOR STATEMENT EXAMPLE
Val = 5;
for (fibNum = 0; Val != 0; Val = Val -1)

fibNum = fibNum + Val;

Example 5-17. Loops – for statement usage.

WHILE STATEMENT EXAMPLE
Val = 5;
while (Val != 0)
begin

fibNum = fibNum + Val;
Val = Val-1;

end

Loops

Overview
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Example 5-18. Loops – while statement usage.

REPEAT STATEMENT EXAMPLE
repeat(5)
begin

fibNum = fibNum + Val;
Val = Val - 1;

end

Example 5-19. Loops – repeat statement usage.

FOREVER STATEMENT EXAMPLE
initial
// initialization here

forever
begin

if (reset)
reset_actions;

else
fetch_and_execute_instructions;

end

5.5.3 Syntax

loop_statement: :=
forever statement
| repeat ( expression ) statement
| while ( expression ) statement
| for ( assignment; expression ; assignment ) statement

5.6 Begin-End Blocks

5.6.1

This is Pascal-like way of grouping procedural statements together. In the syntax,
begin-end forms a single statement and thus, can occur wherever a single statement
can occur. They may have names in which case these are called named blocks.
Certain declarations can be locally made within named blocks and named blocks can
be disabled.

Example 5-20. Loops – forever statement usage.

Introduction
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Example

while (Val != 0)
begin: fblock

fibNum = fibNum + Val;
Val = Val - 1;

end

Example 5-21. Sequential blocks – begin-end usage.

5.6.3

seq_block
::= begin{ statement} end
| begin : block_identifier{ block_item_declaration}{ statement} end

Syntax

5.7 Wait Statements

Introduction

These provide a way to synchronize two or more threads of control (each initial or
always block provide a thread of control; these may bifurcate into multiple threads if
fork-joins are used). The Example 5-22 below is an example of simple handshaking
between two blocks.

Example

initial initial
begin begin
b=0; a=0;
wait (a=1);     #10;
b = 1;           a=1;
wait (b=1);      ...

end
end

Example 5-22. Wait statement – synchronizing two processes.

5.7.3 Syntax

wait_statement::=
wait ( expression ) statement_or_null

5.7.1

5.7.2

5.6.2
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Event and Delay Controls

Overview

5.8.1.1 Introduction – Event control is probably the most elegant feature in Verilog
for synchronization and timing abilities. Several event related facilities are discussed
in the following sections of:

1.

2.

3.

4.

5.

event declarations

multi-event event – event OR

event usage – @event

event generalization

generalized event transitions

5.8.1.2 Examples
event ec1, ec2; //from 8085 based system - 2 phases of cycle
->ec1 ; //trigger ec1 event
always @ ec1 //event usage

check_for_interrupts;

Example 5-23. Event declarations and usage.

5.8.1.3 Syntax
event_statement:: = event_declaration

||= multi_event_event
||= event_trigger_statement
||= scalar_event_expression
||= event_control event_expression

Event Declarations

5.8.2.1 Introduction – Special flags or events that can be triggered and can be
waited upon are declared using event declarations. Examples and usage is discussed in
the subsequent sections in this chapter.

5.8.2.2 Example
event e1, e2;

Example 5-24. Event declarations.

5.8

5.8.1

5.8.2
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5.8.2.3 Syntax
event_declaration

::= event { name_of_event, } ;

5.8.3 Multi-Event Event – Event OR

5.8.3.1 Introduction – The only operator supported on the event data-type is the
OR operator. This allows multiple events to trigger an action when any one of these
is triggered.

Example
(e1 or e2)

Example 5-25. Multi-event event.

5.8.3.3 SYNTAX
multi_event_event ::= event_expression or event_expression

5.8.4 Event Usage

5.8.4.1 Introduction – Events can be triggerred by using the -> symbol. All
triggered events immediately start the activity at the place where sensitivity has been
created for that event using the @ symbol or using the wait statement. Triggering
events is analogous to setting a condition to be satisfied and then the code waiting for
this condition to be satisfied resumes execution on the event trigger. In the following
example, the tasks action_set1 and action_set2 are waiting on the event e1 and e2,
respectively. On triggering events e1 and e2, the 2 tasks will be executed. Typically
the trigger and the action will be located in different threads of control. This can be
seen in Example 5-26 below.

5.8.4.2 Example
->e1; ->e2;

always
@el
action_set1;
always
@e2
action_set2;

Example 5-26. Event triggering and event based synchronization.

Control flow modeling with events must have correct sensitivity and appropriate
enclosing control structures like always, initial or forever.

5.8.3.2
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5.8.4.3 Syntax
event_trigger ::=

-> event_identifier ;

5.8.5 Event Generalization

5.8.5.1 Introduction –Any expression is allowed in place of an event variable. The
semantics of this construct is as follows: any value change in this expression will
result in an implicit trigger.

5.8.5.2 Example
@(var1)

action_set1;

// the following is not a good way to model
// semantics is not obvious for this

@(var1==1)
action_set1;

Here are equivalent, cleaner ways to model:

For gating value of var1, use wait
wait(var1 == 1);
action_set1;

If a change is must alongwith gating value, use @ combined with wait.

always
begin
@var1
wait(var1 ==1);
action_set1;

end

This is same as:

always @var1
if  (var1 ==1)
action_set1;

5.8.5.3 Syntax
scalar_event_expression ::=

Scalar event expression is an expression that resolves to a one bit value.

Generalized Event Transitions5.8.6

5.8.6.1 Introduction – For any expression that evaluates to a bit-value, event can be
created for a value change on that expression using the ‘@’ symbol followed by the
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expression enclosed in parentheses. This forms a generalized event construct in
Verilog and is a powerful tool for modeling synchronizations and sensitivities. In
addition, rising and falling edge transitions via posedge (positive edge) and negedge
(negative edge) operators is supported as generalized event transitions. In specify
blocks, while modeling path-delays, any transition on a signal forms an event. Same
is true of the user-defined primitives that are edge-sensitive.

5.8.6.2 Example
always @reset

if (reset ==1)
reset_operation;

else
normal_operation;

5.8.6.3 Syntax
event_control

::= @ identifier
| @ ( event_expression )

event_expression
::= expression
| posedge scalar_event_expression
| negedge scalar_event_expression
| event_expression or event_expression

Fork-Join Blocks5.9

5.9.1 Introduction

This is a way of providing concurrency within a procedural block. All statements
within this block will execute concurrently.

5.9.2 Examples

begin
fork

forever
begin: IP

wait(reset= 1);
fetch_instruction;
process_instruction;

end

forever
begin

wait (reset ==0);
disable IP;
Reset_registers;
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wait (reset == 1);
end

join

Example 5-27. Fork-join statements – modeling asynchronous reset and
instruction loop concurrency in microprocessors.

5.9.3 Syntax

par_block
::=fork{ statement} join
| fork: block_identifier{ block_item_declaration}{ statement}
block_identifier

5.9.4 Special Considerations – Modeling Pipelines

These are useful for modeling instructions in a microprocessor whereby parallelism
or pipelines begin after some sequential operations. For example, fetching of
operands from memory is typically serial, but processing may be done in a parallel
fashion. Resets and interrupts are also handled in parallel to the instruction
execution.

// All variables here are globally declared
task add4;
begin

@posedge(clk)
fetch(op1);

@posedge(clk)
fetch(op2);

@posedge(clk)
fetch(op3);

@posedge(clk)
fetch(op4);

fork
@posedge(clk)

sum1 = op1 + op2;
@posedge(clk)

sum2 = op3 + op4;
join
@posedge(clk)
sum = sum1 + sum2;

end

Example 5-28.

// All variables here are globally declared
task add4;
begin

@posedge(clk)

Modeling instructions with no parallelism.
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fetch(op1);
@posedge(clk)

fetch(op2);
@posedge(clk)

fetch(op3);
@posedge(clk)

fetch(op4);
@posedge(clk)
fork

sum1 = op1 +op2;
sum2 = op3 + op4;

join
@posedge(clk)

sum = sum1 + sum2;
end

Example 5-29. Modeling instructions with parallelism.

// Total number of clock cycles here is 6
// If sum1 and sum2 are done in sequence, this would be 7 cycles

The join waits for all statements within the fork-join to complete before moving
on to next instruction after the join

// add_mult4
@posedge clk
fork

sum1 = op1 + op2;
@posedge clk

mult1 = op3 * op4;
join
@posedge (clk)

result = sum1 + mult1;

Example 5-30. Modeling instructions with pipeline – fork-join usage.

Here the control thread coming from sum1's computation will wait for an extra
clock cycle as multiplication is taking 2 clock cycles. Sequential and parallel blocks
can be embedded within each other to produce complex control structure, that
models complex machines elegantly. (Possibly other control flow architectures.)

5.10 Functions and Tasks

5.10.1 Functions

5.10.1.1 Overview – Functions have been encountered in expressions in RTL
descriptions. These can also be used in procedural assignments and other places in
algorithmic descriptions. These are explained here, since their definitions are strictly
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algorithmic style descriptions. Functions can contain zero delay statements only ,
returns a single value, must have at least one parameter and can not call a task.

As opposed to this, tasks can have any sequential statements including waits and
event control, can be invoked from within any sequential block, do not return a
value, and need not have a parameter.

5.10.1.2 Examples
function mux;
input a, b, c, d;
input [1:0] select;

case (select)
2'b00: mux = a;
2'b01:   mux = b;
2'b10: mux = c;
2'b11: mux = d;
default:       mux = 'bx;

endcase
endfunction

Example 5-31. Function definition – a mux.

module multiplexor(a, b, c, d, select, e);
input a, b, c, d;
input [1:0] select;
output e;

assign e = mux (a, b, c, d, select);
endmodule

Example 5-32. Function call – creating a multiplexor module with function
mux.

5.10.1.3 Syntax
function_declaration

::= function [range_or_type] function_identifier ;
function_item_declaration
statement

endfunction

function_item_declaration
::= block_item_declaration
| input_declaration

range_or_type
::= range
| integer
| function_identifier
::= IDENTIFIER
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block_item_declaration
::= parameter_declaration

reg_declaration
|  time_declaration
| integer_declaration
| real_declaration
| realtime_declaration
| event_ declaration

5.10.2 Tasks

5.10.2.1 Overview – Tasks are procedural blocks that can be called from within any
sequential statement or block. As opposed to functions, tasks can have any sequential
statements including waits and event control, can be invoked from within any
sequential block, do not return a value, and need not have a parameter. The
parameter passing proceeds by copying in at invocation time and copying back at
return time.

5.10.2.2 Examples
Task Definition Example

module waveShReg;
wire shiftout; //net to receive circuit output value
reg shiftin;  //register to drive value into circuit
reg phase1,phase2;       //clock driving values
parameter d = 100; //define the waveform time step
shreg cct (shiftout, shiftin, phase1, phase2);
initial

begin :main
shiftin = 0; /initialize waveform input stimulus
phase1 = 0;
phase2 = 0;
setmon; // setup the monitoring information
repeat(2) //shift data in

clockcct;
end

task setmon; //display header and setup monitoring
begin

$display(" time clks in out wal-3 wbl-2");
$monitor ($time,,,,phasel, phase2,,,,,,shiftin,,,, shiftout,,,,,

cct.wa1, cct.wa2, cct.wa3,,,,,cct.wb1, cct.wb2);
end

endtask
endmodule

Example 5-33. Task declaration and usage – a shift register.
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5.10.2.3 Syntax
task_declaration

::= task task_identifier;
{task_item_declaration}
statement_or_null

endtask

task_item_declaration
::= block_item_declaration
| input_declartion
| output_declaration
| inout_declaration

Syntax for Task Enabling
task_enable

::= task_identifier
| task_identifier (expression{ ,expression} ) ;

system_task_enable
::= system_task_name;
| system_task_name( expression{ ,expression} ) ;

system_task_name
::= $system_identifier (Note: the $ may not be followed by a space.)

5.10.2.4 Special Considerations in Tasks – Verilog mimics hardware and does not
support pure recursion. The task recursion in Verilog is limited and no stack is built;
only control thread duplication takes place but data structures get reused like in a
pipelined design.

5.11 Task Disabling

5.11.1 Introduction

Task disabling allows stopping a thread of control. Disabling is also supported for
named blocks. Reset and interrupt modeling in a microprocessor cannot be done
without an asynchronous change in thread of control like in disable.

5.11.2 Examples

module microprocessor(reset,data,address);
input reset;

inout data[63:0], address[31:0];

initial
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fork
forever
begin: IP

wait(reset == 1);
fetch_instruction;
process_instruction;

end
forever
begin

wait (reset == 0);
disable IP;
Reset_registers;
wait (reset == 1);

end
join

task fetch_instructions;

endtask;

task process_instructions;

endtask;

endmodule

Example 5-34. Task disabling – reset modeling for a microprocessor.

5.11.3 Syntax

disable_statement ::= disable name_of_block_or_task;

5.12 Assign-Deassign Statements

5.12.1 Introduction

The assign and deassign statements provide a way of modeling connections and
disconnections. This is like the tri-state bus or other switching networks or a latching
phenomenon, which are some of the simplest examples of connections and
disconnections. Assign creates a quasi-continuous assignment on the reg type
variable on the left hand side of the assignment.

5.12.2 Example

module dFlop (preset, clear, q, clock, d);
input preset, clear, clock, d;
output q;
reg q;

.......

........
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always
@(clear or preset)

begin
if(!clear)

#10 assign q = 0;
else if (!preset)

#10 assign q=1 ;
else

#10 deassign q;
end

always
@(negedge clock)

#10 q = d;
endmodule

Example 5-35. Aassign – deassign – a flip-flop model with quasi-continuous
assignments.

5.12.3 Syntax

procedural_continuous_assignment::=
assign reg_assignment |
deassign reg_1value

5.13 Force-Release Statements

5.13.1 Introduction

The statements of force-release are provided as a debugging mechanism in Verilog.
The ‘force’ statement allows you to put a value on a net and override all other drivers
to it. ‘release’ will release this. Use of these in a model is not recommended. These
are for use only in stimulus or test-bench or in interactive sessions. Use assign,
deassign in a model. The reason for this is semantics (or lack thereof for this
construct). ‘assign’ is also a way of modeling level-sensitive behavior that is
prevalent upon specific input conditions. ‘force’ is a debugging tool in general and is
useful especially for arbitrarily "assigned" lvalues.

5.13.2 Examples

module test_dff;
//Instantiate d flip-flop module defined in previous section

dFlop dff(preset, clear, q, clock, d);

initial
begin

// set initial state; This is the only way to set
// a variable that has an "assign" on it
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force q = 0;
preset = 1;
#20;
preset = 0;
release q;
#20;
preset = 1;

end
endmodule

Example 5-36. Force-release statements – debugging the flip-flop model.

Force and release statements are designed for use in an interactive debugging
session. When some variable goes to value x, to see if it is the source of problem and
if the fanouts are also causing the problem, force this to non-x value and set the trace
on. This will indicate all fanout evaluation results as they are evaluated with the
inputs forced to known values. If any of the results are bad (x), the problem is now
located. If not, release this node and continue onto other nodes with the same
debugging process using force and release.

5.13.3 Syntax

force_statement::= force reg_assignment |
release reg_lvalue |
release net_lvalue

5.14 A Behavioral Modeling Example – An Essential Microprocessor

In this section, we describe a model of a microprocessor that entails the essence of
behavioral modeling. Here we model a few instructions and the reset operation.
Usage of case statements in the decoding operation, disable statements for resets,
memory to store the source program and data, as well as methods of input and output
are noteworthy in this example. The input and output files are also listed after the
model.

// Write a model of a processor with the following characteristics:
// This is 8 bit system. Separate data and address bus of 8 bits exist.
// Has 5 instructions: ADD, SUB, MUL, DIV, BRANCH The instructions of
// ADD, SUB, MUL, DIV have 3 operands. BRANCH is relative.
// This has memory of 256 locations that contains the instruction stream.
// This has a reset sequence that is based on the wire RESET becoming ‘1’.
// The clock cycle is 50 ns.
// The ADD and SUB take 1 clock -cycle, BRANCH takes 2 clock cycles, MUL
// and DIV take 3 clock cycles.
// Assume any other characteristics as necessary as long as they do not

// conflict with those above.

/********************************************************************
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* Processor Assumptions/Description
********************************************************************/

// This processor has a separate data and instruction memory. The instructions
// are contained in the file "InstrMemory.data". The data memory image is
// contained in the file "DataMemory.data".
// The instruction word length is 32-bits.
//
// The instruction format for the ADD, SUB, MUL and DIV instructions is:
//
// 31 23 15 7 0

// | OPCODE | DEST ADDR | SOURCE ADDR 1 | SOURCE ADDR 2 |

//
// The instruction format for the BRA instruction is:
//
// 31 23 15 7 0

// | OPCODE | BRA ADDR (REL) | NOT USED | NOT USED |

`timescale 1ns/1ns

module processor;

reg clock;
reg reset;

reg [31:0] Imem[0:255]; // 256 word x 32-bit instruction memory
reg [7:0] Dmem[0:255]; // 256 word x 8-bit data memory

reg [7:0] pc; // 8-bit program counter
reg [31:0] instruction; // 32-bit Instruction Register

reg [7:0] opcode; // 8-bit opcode
reg [7:0] destAddr; // 8-bit Destination Address
reg [7:0] src1Addr; // 8-bit Source Address #1
reg [7:0] src2Addr; // 8-bit Source Address #2

reg [7:0] src1Data; // 8-bit Source Data #1
reg [7:0] src2Data; // 8-bit Source Data #2
reg [7:0] Result; // 8-bit Result Data

reg [7:0] braAddr; // 8-bit Relative Branch address

// define mnemonics to represent opcodes
`define ADD 8'b00000000
`define SUB 8'b00000001
`define MUL 8'b00000010

// ------------------------------------------------------------------

---------------------------------------------------------------//

---------------------------------------------------------------

---------------------------------------------------------------

//

//
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`define DIV 8'b00000011
`define BRA 8'b00000100

`define clk_period 50

/********************************************************************
* Clock oscillator
*******************************************************************/

initial
#5 assign clock=1;

always
#( clk_period/2) assign clock=~clock;

/********************************************************************
* Processor Model
********************************************************************/
always @(posedge reset or posedge clock) begin

if (reset)
begin // Reset Sequence

disable fetch_and_execute;
pc=0;

end
else begin : fetch_and_execute // Fetch and execute instructions

instruction=Imem[pc];

opcode=instruction[31:24]; // Get Opcode
destAddr=instruction[23:16]; // Get Destination Data Address
src1Addr=instruction[15:8]; // Get Source Data Address #1
src2Addr=instruction[7:0]; // Get Source Data Address #2

braAddr=instruction[23:16]; // Get relative address for BRA instruction

case(opcode)
`ADD:
begin

$display("ADD INSTRUCTION:");
src1Data=Dmem[src1 Addr]; // Get Data Operands
src2Data=Dmem[src2 Addr];
Result=src1 Data+src2Data; // Calculate Result
Dmem[destAddr]=Result; // Write Result data
#1 pc=pc+1; // ADD instruction takes one clock cycle

end

`SUB:
begin

$display("SUB INSTRUCTION:");
src1Data=Dmem[src1Addr]; // Get Data Operands
src2Data=Dmem[src2Addr];



Chapter 5128

Result=src1Data-src2Data; // Calculate Result
Dmem[destAddr]=Result; // Write Result data
#1 pc=pc+1; // SUB instruction takes one clock cycle

end

`MUL:
begin

$display("MUL INSTRUCTION:");
src1 Data=Dmem[src1 Addr]; // Get Data Operands
src2Data=Dmem [src2 Addr];
Result=src1 Data*src2Data;   // Calculate Result
Dmem[destAddr]=Result; // Write Result Data
#(`clk_period*2); // MUL instruction takes three clock cycles
#1 pc=pc+1;

end

`DIV:
begin

$display("DIV INSTRUCTION:");
src1Data=Dmem[src1Addr];
src2Data=Dmem[src2Addr];
Result=src1Data/src2Data;
Dmem[destAddr]=Result;
#(`clk_period*2); // DIV instruction takes three clock cycles
#1 pc=pc+1; // increment program counter

end

`BRA:
begin

$display("BRA INSTRUCTION:");
#(`clk_period); // BRA instruction takes two clock cycles
#1 pc=pc+braAddr;  // calculate new program counter

end

endcase

end
end

* Display Results
********************************************************************/
initial

begin

// Display a header for the test Output

$display("\t PROG DEST SRC1 SRC2 SRC1 SRC2 RESULT");
$display("\t TIME RESET CNTR OPCODE ADDR ADDR ADDR DATA DATA

DATA");

/********************************************************************
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$display("\t---- ---- ---- ------ ---- ---- ---- ---- ------\n");

// Display Results at every clock edge
forever @(posedge clock)
$display ("\t %0d \t %b %h %h %h %h %h %h %h %h",
$time,reset,pc,opcode,destAddr,src1Addr,src2Addr,src1Data,src2Data, Result);

end

* Initialize and Run
********************************************************************/
initial

begin
$readmemh("InstrMemory.data",Imem); // Initialize instruction memory
$readmemh("DataMemory.data",Dmem); // Initialize data memory

assign reset=1; // Initialize reset
#220 assign reset=0;

#1000
$writememh("DataMemory2.data",Dmem,0,32); // Write Out data memory

// at end of simulation
$ finish;

end
endmodule

/*********************************************************************
* Instruction Memory
**********************************************************************/
00000102 // Opcode=ADD, DestAddr=00, SrcAddr1=01, SrcAddr2=02
01030405 // Opcode=SUB, DestAddr=03, SrcAddr1=04, SrcAddr2=05
02060708 // Opcode=MUL, DestAddr=06, SrcAddr1=07, SrcAddr2=08
03090aOb // Opcode=DIV, DestAddr=09, SrcAddr1=0a, SrcAddr2=0b
04040000 // Opcode=BRA, BraAddr =04
000c0d0e // Opcode=ADD, DestAddr=0c, SrcAddr1=0d, SrcAddr2=0e (SKIPPED
INSTRUCTION)
000f1011 // Opcode=ADD,DestAddr=0f, SrcAddr1=10, SrcAddr2=11 (SKIPPED
INSTRUCTION)
00121314 // Opcode=ADD, DestAddr=12, SrcAddrl=13, SrcAddr2=14 (SKIPPED
INSTRUCTION)
03151617  // Opcode=DIV, DestAddr=15, SrcAddr1=16, SrcAddr2=17
0218191a // Opcode=MUL, DestAddr=18, SrcAddr1=19, SrcAddr2=1a
011b1c1d // Opcode=SUB, DestAddr=1b, SrcAddr1=1c, SrcAddr2=1d
001e1f20 // Opcode=ADD, DestAddr=1e, SrcAddr1=1f, SrcAddr2=20

X-Sun-Data-Type: default
X-Sun-Data-Name: DataMemory.data

/********************************************************************

----------
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X-Sun-Content-Lines: 14
*************************************************************************
* Data Memory
*********************************************************************/

00 01 02 // Data for Instruction #1 : Dest, Src1, Src2 (ADD Instruction)
00 02 01 // Data for Instruction #2 : Dest, Src1, Src2 (SUB Instruction)
00 05 10 // Data for Instruction #3 : Dest, Src1, Src2 (MUL Instruction)
00 80 02 // Data for Instruction #4 : Dest, Src1, Src2 (DIV Instruction)
00 00 00 // Data for Instruction #6 : Dest, Src1, Src2 (ADD Instruction, skipped)
00 00 00 // Data for Instruction #7 : Dest, Src1, Src2 (ADD Instruction, skipped)
00 00 00 // Data for Instruction #8 : Dest, Src1, Src2 (ADD Instruction, skipped)
00 40 04 // Data for Instruction #9 : Dest, Src1, Src2 (DIV Instruction)
00 05 0f// Data for Instruction #10: Dest, Src1, Src2 (MUL Instruction)
00 ff 01 // Data for Instruction #11: Dest, Src1, Src2 (SUB Instruction)
00 12 34 // Data for Instruction #12: Dest, Src1, Src2 (ADD Instruction)

Data-Name: DataMemory2.data

03
01
02
01
02
01
50
05
10
40
80
02
00
00
00
00
00
00
00
00
00
10
40
04
4b
05
0f
fe
ff
01
46

---------
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PROG DEST SRC1 SRC2 SRC1 SRC2 RESULT
TIME RESET CNTR OPCODE ADDR ADDR ADDR DATA DATA DATA

5 1 00 xx xx xx xx xx xx xx
50 1 00 xx xx xx xx xx xx xx
100  1 00 xx xx xx xx xx xx xx
150  1 00 xx xx xx xx xx xx xx
200    1 00    xx xx xx xx xx xx xx

ADD INSTRUCTION:
250 0 00 00 00 01 02 01 02 03

SUB INSTRUCTION:
300 0 01 01 03 04 05 02 01 01

MUL INSTRUCTION:
350 0 02 02 06 07 08 05 10 50
400 0 02 02 06 07 08 05 10 50
450 0 02 02 06 07 08 05 10 50

DIV INSTRUCTION:
500 0 03 03 09 0a 0b 80 02 40
550 0 03 03 09 0a 0b 80 02 40
600 0 03 03 09 0a 0b 80 02 40

BRA INSTRUCTION:
650 0 04 04 04 00 00 80 02 40
700 0 04 04 04 00 00 80 02 40

DIV INSTRUCTION:
750 0 08 03 15 16 17 40 04 10
800 0 08 03 15 16 17 40 04 10
850 0 08 03 15 16 17 40 04 10

MUL INSTRUCTION:
900 0 09 02 18 19 1a 05 0f 4b
950 0 09 02 18 19 1a 05 0f 4b
1000 0 09 02 18 19 1a 05 0f 4b

12
34

X-Sun-Data-Name: verilog.log

Host command: verilog
Command arguments:
processor.v

VERILOG-XL 2.1.2 log file created Nov 11, 1995 15:52:56
VERILOG-XL 2.1.2 Nov 11, 1995 15:52:56

Compiling source file "processor.v"
Highest level modules:
processor
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Using the model for the microprocessor in example, verify the functionality with
given instruction and data memory (files instrm1.dat and datam.dat). Single step
with "trace on" to see the simulation in detail. Obtain the trace for this.

Add information to these files for testing the following instructions:
ADD DM[1], DM[6]
BRA IM[8]

Verify the simulation and display the results for these

Add code to the model for instructions of BREQ—(Branch on equal). This will
have 3 operands—DM[addr1] and DM[addr2] { 2 addresses in data memory}
and a Branch address:

BREQ addr1, addr2, iaddr
Verify this using the following:

SUB 5, 8, 9
BREQ 5,8, 1

Convert the following repeat loop into for and while loops.
parameter DivsLength = 31
parameter DivdLength 63
parameter QuoLenght 31
parameter HiDminimum = 32

repeat(DivsLength+1)
begin

quotient = quotient << 1;
dividend = dividend << 1;
dividend[DivdLength: HiDminimum] = dividend[DivdLength:

HiDminimum] – divisor;
if (! dividend [DivddLength])

quotient = quotient + 1;
else
begin

2.

1c.

1b.

1a.

5.15 Exercises

Example 5-37. A behavioral processor model

SUB INSTRUCTION:
1050 0 0a 01 1b 1c 1d ff 01 fe

ADD INSTRUCTION:
1100 0 0b 00 1e 1f 20 12 34 46
1150 0 0c xx xx xx xx 12 34 46
1200 0 0c xx xx xx xx 12 34 46

L197 "processor.v": $finish at simulation time 1220
531 simulation events
CPU time: 0.3 secs to compile + 0.1 secs to link + 0.1 secs in simulation
End of VERILOG-XL 2.1.2 Nov 11, 1995 15:52:58
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3.

dividend[DivdLength:Himinimum] =
dividend[DivdLength:Himinimum] + divisor;

end
end

Compute the results of the following blocking and non-blocking
assignments:

module e (out);
output out;
reg a,b,c;
reg d,e,f;

initial
begin

$monitor ("time=%d a=%d b=%d c=%d e=%d
\n",$time,a,b,c,d,e):

a=0; b=1; c=0; d=0; e=1;
#30 $finish;

end

always c = #5 ~c;

always @(posedge c)
begin

a = b;
b = a;
d<= e;
e <= d;

end
endmodule



6 STRUCTURAL PRIMITIVE
MODELING

6.1 Introduction

This chapter describes the predefined gates, switches, and user-defined primitives.
The user-defined primitive enables extending set of built-in gates, and also allows
one to model latches and flip-flops. This forms modeling with structural primitives
in Verilog.

6.2 Gates

6.2.1 Introduction

Verilog defines a set of predefined modules that model the behavior of logic gates.
These are common ways to describe implementation or structural details of a design.
These are called built-in gates and have names like and, or, xor, not. The Table 6-1
in section 6.2.3 provides a complete list of gates and their functions. These use the
4-logic values 0-1-x-z and perform functions commonly understood for these—like
and, or, nand, nor, xor, and xnor. The buf is a buffer and not is an inverter.
Additional gates like bufif and notif gates use additional values of L and H. These
are useful for reducing pessimism and are interpreted as:

L is either a 0 or X, but not 1

H is either 1 or X but not 0.
These gates represent TTL type transistors. Reducing pessimism can be

understood to be the process of reducing number of unknowns (xs) during
simulation.
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6.2.2 Example

nand #(10,10) nn (x2, aIn, bIn);
nor (out, inl, in2, in3, in4);
not (outl, out2, in);

Example 6-1. Built-in gates modeling.

6.2.3 List of Gates and Their Functions

The list of built-in gates includes and, nand, or, nor, xor, xnor,buf, not, bufif0,
bufifl, notifl, notif0, pullup and pulldown gates.

6.2.4 Syntax for Gates and Switch Declarations

gate_instantiation
::=n_input_gatetype [drive_strength] [delay2] n_input_gate_instance{ ,

n_input_gate_instance} ;
| n_output_gatetype[drive_strength] [delay2] n_output_gate_instance{ ,

n_output_gate_instance};
| n_enable_gatetype [drive_strength] [delay3] enable_gate_instance{ ,

enable_gate_instance} ;
| mos_switchtype [delay3] mos_switch_instance{ , mos_switch _instance} ;
| pass_switchtype [delay3] pass_switch_instance{ , pass_switch_instance} ;
| pass_en_switchtype [delay3] pass_en_switch_instance{ , pass_en_switch _instance} ;
| cmos_switchtype [delay3] cmos_switch_instance{ , cmos_switch_instance} ;



| pullup [pullup_strength] pull-gate_instance{ , pull_gate _instance} ;
| pulldown [pulldown_strength] pull-gate_instance{ , pull_gate _instance} ;

n_input_gate_instance ::= [name_of_ gate_instance] ( output_terminal, input_terminal{,
input_terminal});
n_output_gate_instance ::= [name_of_ gate_instance] ( output_terminal, {,output_terminal },
input_terminal,

input_terminal});
enable_gate_instance ::= [name_of_ gate_instance] ( output_terminal, input_terminal{,
input_terminal,

enable_terminal});
mos_switch_instance ::= [name_of_ gate_instance] ( output_terminal, input_terminal,
enable_terminal});
pass_switch_instance ::= [name_of_ gate_instance] ( inout_terminal, inout_terminal,
enable_terminal});
pass_enable_switch_instance ::= [name_of_ gate_instance] ( inout_terminal, inout_terminal,
enable_terminal);
cmos_ switch_ instance ::= [name_of_ gate_instance] (output_terminal,
input_terminal,ncontrol_terminal,

pcontrol_terminal);
pull_ gate_ instance ::= [name_of_ gate_instance] (output_terminal)
name_of_ gate_instance ::= gate_instance_identifier[range]
pullup_strength ::= (strength0, strength1)

| (strength1, strength0)
| (strength0)

input_terminal ::= scalar_expression
enable_terminal ::= scalar_expression
ncontrol_terminal ::= scalar_expression
pcontrol_terminal ::= scalar_expression
output_terminal ::= terminal_identifier | terminal_identifier[constant_expression]
inout_terminal ::= scalar_expression

n_input_gatetype ::=
and | nand | or | nor | xor | xnor

n_output_gatetype ::= buf | not

enable_gatetype ::= bufif0 | bufif1 | notif0 | notif1
|

mos_switch_type ::=nmos | rnmos | pmos | rpmos
cmos_switch_type ::= cmos | rcmos
pass_switch_type ::= tran | rtran
pass_switch_type ::= tranif0 | rtranif0 | tranif1 | rtranif1

delay3 ::= #delay_value | #( delay_value [,delay_value [,delay_value]])
delay2 ::= #delay_value | #( delay _value [,delay _value])
delay_value

::= unsigned_number
| parameter_identifier
| (mintypmax_expression [,mintypmax_expression] [,mintypmax_expression])
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6.3 Switches

6.3.1 Introduction

This modeling level contains details of design up to the transistors and even down to
capacitor or resistor. This level uses strength algebra to digitize the effects of basic
charge and voltage changes in a block of logic. Some switch level designs are not
convertible to gate-level models and such parts of logic are modeled using the
constructs like nmos, pmos, or tranif0, tranif1. These reproduce technology
dependent behavior as well. The list of switch level primitives in Verilog includes
pmos, nmos, cmos, rnmos, rpmos, tran, tranif0, tranif1, rtran, rtranif0), rtranif1,
pullup, pulldown. The strength values and the switch modeling is discussed in more
detail in Chapter 17. The gates that begin with the letter r are resistive transistors
that cause a step-down in values.

6.3.2 Syntax

The syntax here is identical to the gate-declaration and is given above along with
gate-declaration. See the second line in the list of <GATETYPE>s for the complete
switch-level primitive names. Drive strength of a gate was mentioned in section
6.2.4, but is expanded in this section.

drive_strength
::=(STRENGTH0), STRENGTH1)
| (STRENGTH1 ,STRENGTH0)

STRENGTH0 is one of the following keywords:
supply0 strong0 pull0 weak0 highz0

STRENGTH1 is one of the following keywords:
supply1 strong1 pull1 weak1 highz1

6.4 User-Defined Primitives

6.4.1 Introduction

The User-Defined Primitive provides ways of using truth-tables as new primitives at
the gate-level. It supports combinational and sequential circuits. In sequential, both
level-sensitive and edge-sensitive and mixed descriptions are supported. A user-
defined primitive is expected to be compiled into a single table lookup for its
evaluation. Only 1 output per User-Defined Primitive is supported. Thus multiple
user-defined primitives are needed, 1 per output for a meaningful logic block with
multiple outputs. In the sequential designs, only 1 internal state for sequentials is
supported. Everything is strictly single bit with 0, 1, x values on input and 0, 1, x, z
on the output. These are the most efficient way to model; reason being the # steps in
evaluations for gates, primitives, RTL, behavioral. Some idea of how things work
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inside a simulator is useful to model efficiently. An automatic production is possible
from other types of descriptions and by good programming.

User-Defined Primitives are commonly known as UDPs. In a udp, spaces and
cases do not matter. In general, conflicting entries, where two different descriptons of
the same input set has different outputs, will be detected and reported. Exception to
this is the mixed descriptions of edge-sensitive and level-sensitive sequential nature.
Conflicts in such entries is allowed as explained in section 6.8.

6.4.2 Examples

// This is a combinational primitive with 3 inputs and 1 output
primitive carry(carryOut, carryIn, aIn, bIn);
output carryOut;
input carryIn,

aIn,
bIn;

table
0 00 : 0;
0 01 : 0;
0 10 : 0;
0 11 : 1;
1 00 : 0;
1 01 : 1;
1 10 : 1;
1 11 : 1;

endtable
endprimitive

Example 6-2. A user-defined primitive definition.

6.4.3 Syntax

UDP DECLARATION and INSTANTIATION

UDP_declaration
::= primitive UDP_identifier (udp_port_list);

UDP_port_declaration {udp_port_declaration}
udp_body

endprimitive

udp_port_list ::= output_port_identifier, input_port_identifier { , input_port_identifier }

udp_port_declaration ::=
output_declaration
| reg_declaration
| input_declaration

udp_body ::= combination_body | sequential_body
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combination_body ::= table combinational_entry { combinational_entry } endtable

sequential_body ::= [UDP_initial_statement] table sequential_entry { sequential_entry }
endtable

UDP_initial_statement
::= initial output_terminal_name = init_val;

init_val
::= 1'b0
| 1'b1
|  1'bx
|  1'bX
|  1'B0
|  1'B1
|  1'Bx
|  1'BX
| 1
| 0

output_terminal_name
::= variable

combinational_entry
::= level_input_list : OUTPUT_SYMBOL ;

sequential_entry
: := seq_input_list : current_state : next_state ;

seq_input_list
::= level_input_list
|  edge_input_list

level_input_list
::= LEVEL_SYMBOL{LEVEL_SYMBOL}

edge_input_list
::= {LEVEL_SYMBOL}edge_indicator {LEVEL_SYMBOL}

edge_indicator}
::= ( LEVEL_SYMBOL LEVEL_SYMBOL )
| EDGE_SYMBOL

current_state
::= LEVEL_SYMBOL
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next_state
::= OUTPUT_SYMBOL
|  -

OUTPUT_SYMBOL is one of the following characters:
0 1 x X

LEVEL_SYMBOL is one of the following characters:
0 1 x X ? b B

EDGE_SYMBOL is one of the following characters:
r R f F p P n N *

UDP_instantiation
::= UDP_identifier [drive_strength] [delay2]
UDP_instance{ ,UDP_instance};

UDP_instance
::= [name_of_UDP_instance] (output_port_connection, input_port_connection

{output_port_connection ,input_port_connection} )
::= [IDENTIFIERrange]

name_of_UDP_instance::= UDP_instance_identifier[range]

6.5 Combinational UDPs

6.5.1 Introduction

These can have up to 10 inputs and 1 output. There is no state column. UDPs
describe the truth-table by enumerating cases. The default rule is that all unstated
combinations result in x output. Idea here is to not assume anything extra within the
model or the simulator. Unstated combinations must be truly don't care. Use of
special symbols to increase readability and writability as follows can be done in
combinational and sequential udps.

? – iterate over 0, 1, x (Don't care on input)

b – iterate over 0,1
UDP entries are case insensitive. The symbol b and B are same internally and so

are the symbols x and X.

6.5.2 Example

// This is a combinational primitive with 3 inputs and 1 output
primitive carry(carryOut, carryIn, aIn, bIn);
output carryOut;
input carryIn,

aIn,
bIn;
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table
0 00 : 0;
0 01 : 0;
0 10 : 0;
0 11 : 1;
1 00 : 0;
1 01 : 1;
1 10 : 1;
1 11 : 1;

endtable
endprimitive

module test_carry;
reg a, b, c;
integer i;
wire cout;

carry ci(cout, c, a, b);
initial
begin
$monitor("time=%d a= %b b=%b c=%b

cout=%b",$time,a,b,c,cout);
for (i=0; i<9; i=i+1)
begin

{a,b,c}= i;
#10;

end
a = 'bx;
#10
b= 'bx;

end
endmodule

Example 6-3. A combinational user–defined primitive: An adder part –
carry computation.

6.5.3 Syntax

This is included with overall UDP syntax specification in section 6.4.

6.6 Level-Sensitive Sequential UDP

6.6.1 Introduction

These are similar to combinational UDPs s, but have a state column. Some additional
symbols like '-' in output column indicates no change. These are one state only
primitives.

---------
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6.6.2 Example

primitive latch (q, clock, data);
output q;
reg q;
input clock, data;

table
// clock data state output

0 1 : ? : 1;
0 0 : ? : 0;
1 ? : ? :    -;

endtable
endprimitive

module test_latch;
reg a, b, c;
integer i;
wire q;

latch li(q , a, b);
initial
begin
$monitor("time=%d a= %b b=%b---------q=%b",$time,a,b,q);
for (i=0; i<5; i=i+l)
begin

{a,b} = i;
#10;

end
a = 'bx;
#10
b= 'bx;

end
endmodule

Example 6-4. Level sensitive sequential UDP - a latch.

6.6.3 Syntax

This is included with overall UDP syntax specification in section 6.4.3.

6.7 Edge Sensitive Sequential UDPs

These user-defined primitives are similar to level-sensitive, but have edges on inputs.
These have only one edged input per entry. An edge descriptor is represented as
(from_value to_value) An example of edged input entry is (01). Some of the special
symbols used here are:

r represents (01)

f represents (10)

p represents (0?) and (?1),
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n represents (?0) and (1?)

* represents all edges
Edge sensitive is SUPERSET of level sensitive in the sense that all behavior from

level-sensitive entries can be equivalently represented by edge sensitive entries, but
the vice versa is not true.

6.8 Mixed Level and Edge Sensitive Sequential UDPs

These descriptions are allowed in UDPs. The motivation behind such usage is the
modeling of edge-triggered flip-flops with resets and clears. Reset and Clear are
level-sensitive while the rest of the active behavior is edge-sensitive. A conflict may
arise and in case of reset and clear, those behaviors dominate over the clocked
behavior. Thus, level-sensitive behavior takes precedence over edge-sensitive in case
of conflicts in entries of these two types. For conflicts on entries of same type, an
error like in other primitives (pure level or pure edge) is an error. The conflict
resolution rules are meant to describe the hardware behavior correctly.

// Following is the model for SR edge-triggered flip-flop

primitive sr_edge_prim(q, clear, s, r, clock);
output q;
reg q;
input clear, s, r, clock;
table

//clear s r clock qcur q
1 ? ? 0 : ? : 0;

0 0 0 (??) : ? : -;
0 1 0 r : ? : 1;
0 0 1 r : ? : 0;
? ? ? f : ? : -;
? * ? ? : ? : -;
? ? * ? : ? : -;

endtable
endprimitive

module sr_edge_ff(clear, s, r, clock, q, qbar);
inout q, qbar;

input clear, s, r, clock;
sr_edge_prim pi (q, clear, s, r, clock);
not (qbar, q);

endmodule

module test_sredge;
reg s, r, clear;
sr_edge_ff s1 (clear, s, r, clock, q, qbar);
m555 ml (clock);
initial
begin



#10
clear = 1;

#200
clear = 0;

#200
s=1; r =0;

#200
s=0;  r=1;

#200
s=0; r=0;

#200
$finish;

end

always
#200

$display("time=%d clear=%d s=%d r=%d clock=%d q=%d
qbar=%d", $time, clear, s, r, clock, q, qbar);

endmodule

module m555 (clock);
output clock;
reg clock;

initial
#5 clock =1;

always
#50 clock = ~ clock;

endmodule

Example 6-5. Mixed edge and level sensitive sequential UDP - SR flip-flop
with clear.

6.9 UDP Instances

6.9.1 Introduction

UDPs are instantiated just like modules. A primitive name followed by instance
name and the list of ports will make the instance like for modules or gates. Delays
can be used for udp-output like those for built-in gates. Parameters are not used for
upds.
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6.9.2 Example

module test_k;
wire q, clock, j, k, preset, clear;
reg j, k;
jkEdgeFF jk (q, clock, j, k, preset, clear);

initial
begin

reset_ff;
#50;

j  = 1;
k = 0;

#50;
end
m555 timer (clock);

endmodule

Example 6-6. User-defined primitives – instances.

6.9.3 Syntax for Primitive Instance

UDP_instantiation
::= UDP_identifier [drive_strength] [delay2]
UDP_instance{ ,UDP_instance);

UDP_instance
::= [name_of_UDP_instance] (output_port_connection, input_port_connection
{output_port_connection ,input_port_connection} )

::= [IDENTIFIER[range]
name_of_UDP_instance: := UDP_instance_identifier[range]

6.10 Exercises

1. Find all the syntactic and semantic errors in the following Verilog module:

module IOBuffer(bus, in, out, dir)
inout bus;
reg bus;

parameter
R_Min = 3, R_Typ = 4, R_Max = 5,
F_Min = 3, F_Typ = 5, F_Max = 7;
Z_Min = 12, Z_Typ = 15, Z_Max = 17;

bufif 1 #(R_Min, R_Typ, R_Max :
F_Min, F_Typ, F_Max:
Z_Min, Z_Typ, Z_Max)

(bus, out, dir);
latch_prim

(in, clock, bus);
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m555 (clock);
endmodule

primitive latch (q, clock, data);
output q;
reg q;
input clock, data;
wire clock, data;
table
// clock data states output

0 1 : ??: 1;
0 0 : ? ?: 0;
1 ? : ? ?: -;

endtable
endprimitive

Convert the following behavioral description into a user-defined primitive. After
doing this, add cases to reduce pessimism on x values for bits in flag.

module m(out, inl, in2, in3, in4, flag);
output out;
input in1, in2, in3, in4;
input [1:0] flag;
reg out;

always
@ {case, in1 , in2 , in3 , in4 }
case (flag)

0 : out = in1;
1 : out = in2;
2: out = in3;
3 : out = in4;

endcase
endmodule

Write results from the following Verilog model://. Following is the model for SR
edge-triggered flip-flop:

primitive sr_edge_prim(q, clear, s, r, clock);
output q;

reg q;
input clear, s, r, clock;

table
//clear s r clock qcur q

1 ? ? 0 : ? : 0;
0 0 0 (??): ? : -;
0 1 0 r : ? : 1;
0 0 1 r : ? : 0;
? ? ? f : ? : -;
?  * ? ? : ? : -;
? ? * ? : ? : -;
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endtable
endprimitive

module sr_edge_ff(clear, s, r, clock, q, qbar);
inout q, qbar;
input clear, s, r, clock;
sr_edge_prim pi (q, clear, s, r, clock);
not (qbar, q);

endmodule

module test_sredge;
reg s, r, clear;
sr_edge_ff s1 (clear, s, r, clock, q, qbar);
m555 m1 (clock);
initial
begin

#10
clear = 1;

#200
clear = 0;

#200
s=l; r=0;

#200
s=0; r=l;

#200
s=0; r=0;

#200
$finish;

end

always
#200
$display("time=%d clear=%d s=%d r=%d clock=%d q=%d qbar=%d",

$time, clear, s, r, clock, q, qbar);
endmodule

module m555 (clock);
output clock;
reg clock;

initial
#5 clock =1;

always
#50 clock = ~ clock;

endmodule
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Create a user-defined primitive (UDP) for the following boolean equation:

out = (a1 & a2 & a3 ) | (b1 & b2)

This UDP has five inputs a1, a2, a3, b1, and b2 and one output out.

Simulate this for the following stimulus block added to the UDP instance:

initial
begin

$monitor($time, a1, a2, a3, b1, b2, out);
for (i=0; i < 32; i=i+l)

#10 {a1,a2,a3,b1,b2} = i;
end

Instantiate the edge-sensitive dff UDP discussed in class to create a module with
q and qbar outputs with a delay of 5 units on q and 7 units on qBar.

STRUCTURAL PRIMITIVE MODELING 149

4.

5.

a.

b.



7 MIXED STRUCTURAL, RTL, AND
BEHAVIORAL DESIGN

7.1 Introduction

One of the sources of power of expressing design in Verilog comes from the ability to
mix the three design styles freely in a module and across modules. This is useful for
flexible design methodology, and also for system level modeling. This is also good
for performing the following functions all within the realm of Verilog.

Design

Test-Bench

Timing

Synthesis.
The design modeling is discussed throughout this book. Several examples of test-

benches are given along with the models in examples until now. Timing will be
discussed in specify blocks. Synthesis will be discussed in synthesis chapter. The
order of events in structural, RTL, and behavioral blocks happening at same time is
indeterminate in general, but simulation starts only with initial and always
statements. In general, all three kinds of blocks are concurrently executed.

7.2 Examples and Scenarios: 1 – Comparing Structural Adder Design
with Behavioral Model

In this, we test an adder for correctness by applying random inputs and checking if
the result matches RTL add operation.

module mixed 1();
wire [31:0] out;
wire carryout;
reg in1, in2, carryin;
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assignout= in1+ in2;

fullAdder_s a (carryout, out, inl, in2, carryin);
always @out

if (out==='bx)
$display("time=%d out has become x", $time, 'bx);

initial
begin

repeat(10000)
begin
#10

inl = $random;
in2 = $random;

end
end

endmodule

module fullAdder_s(cOut, sum, aIn, bIn, cIn);
output cOut, sum;
input aIn, bIn, cIn;

wire x2;

nand

xnor
nor

or
not

endmodule

(x2, aIn, bIn),
(cOut, x2, x8);
(x9, x5, x6);
(x5,xl,x3),
(x1, aIn, bIn);
(x8,xl,x7);
(sum, x9),
(x3, x2),
(x6, x4),
(x4, cIn),
(x7, x6);

Example 7-1. Comparisons of different levels of abstraction by mixed level
design.

7.3 Examples and Scenarios: 2 – System Modeling

In the following system, we are using as asic which was developed previously using
structural level design method. We also have a microprocessor developed at
behavioral level that can handle the instruction set. The memory read and write
cycles are RTL level models. A parity generator at switch level is used.



module system();
micro mbehav();
mem mrtl();
graph masic();
parity_check pswitch();

endmodule

Example 7-2. System modeling with behavioral, rtl, gates and switches
mixed in one board design.

7.4 Examples and Scenarios: 3 – Adding Behavioral Code to a Design
for Checking

External models in VHDL or other simulators can be linked using Programming
Language Interface and system simulation can proceed.

In the following example, we have a gate-level model of adder mixed with a small
behavioral section to generate a special output that tells us whether the adder resulted
in zero as sum. Thus, a special adder is created effortlessly. This part of the design
can be implemented in terms of gates at a later stage.

module adder(in1, in2, cin, out, cout, zero_flag);
/* repeat structural adder from chapter 4; add 1 o/p*/
/* add block of code as follows */

output out, zero_flag, cout;
reg zero_flag;
input in1, in2, cin;

always@ out
if (out == 0)

zero_flag = 1;
else

zero_flag = 0;

nand (x2, in1, in2),
(cout, x2, x8);

xnor (x9, x5, x6);
nor (x5, x1, x3),

(xl,inl,in2);
or (x8, x1,x7);
not (out, x9),

(x3, x2),
(x6, x4),
(x4, cin),

(x7, x6);
endmodule

Example 7-3. A behavioral flag-bit generation mixed with adder of rtl or
structural style.
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7.5 Examples and Scenarios: 4 – Design Cycle and Project Planning
Flexibility

In the example of flip-flop in Chapter 1, the reset was modeled behaviorally while
the rest of the flip-flop was made of gates. This is an example of a design that is a
special design with the reset being connected to the system reset for all such flip-
flops and not available for connections within the design. Thus, mixing of this
behavioral abstraction allows us to make special situations available locally and the
get the design going quickly.

In a scenario where part of the design is synthesized and part of it is hand-
designed, the two paths may have different project-plans. In this case, one can test
the gate-level implementation of one type with the RTL implementation of the other.
Thus, in a design cycle as one refines certain parts of the design downto details,
simulating those with parts which are still RTL and behavioral is a great way to test
these parts. The mixed style allows one to plan the project flexibly and still be
effective in simulating various sections within a system.

7.6 Exercises

1. Add code to check for parity (assume even parity) for Example 7-3. Add another
flag to report errors.

2. Synthesis will be discussed in Chapters 12 to 14. Verifying results of synthesis
involves mixing gate-level and behavioral or rtl level code. Verify the results
from synthesis of Examples 12-1 to 12-4 with their pre-synthesis results and
compare for accuracy. You may want to do this mixed modeling exercise after
you have completed studying Chapter 12.

3. Implement parts of the microprocessor in Example 5-37 using ALU of
Example 3-27. Create a decoder similar to the multiplexer in Example 3-27 and
instantiate this decoder. Model the control using a controller of the style of cache
controller of Example 11-5. Connect the behavioral and implementation (RTL)
level models of the microprocessor and verify the functional correctness using
the tests of Example 5-37.



8 SYSTEM TASKS AND FUNCTIONS

8.1 Introduction

These are predefined tasks and functions built into Verilog HDL. Syntactically all
system tasks and functions always begin the symbol '$'. They provide functions such
as

Input-Output from Files, Screen, and Keyboard;

Simulation Control and Debugging;

Timing Checks, Stochastic, and Probabilistic Analysis;

Conversion Functions between different types
These system tasks and functions typically do not describe hardware per se,

although there are a few exceptions.
Commonly used system tasks and functions are :

$display display values

$monitor trace value-changes

$fopen, $fclose open, close a file

$readmem memory read tasks

$time simulation time

$finish, $stop end, stop simulation

$dumpvars dump data to file for waveform display

$setup, $hold setup and hold timing checks
These along with similar other tasks will be described in detail in the following

sections of this chapter.
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8.2 Display System Tasks

8.2.1 Overview

The displaying of values and strings to the standard output is done via display tasks.
These are:

$display $displayb $displayh $displayo

The $display tasks will display formatted values and strings in user-defined
format while the other three display values in binary, hex, or octal form.

8.2.2 Examples

module disp;
reg [0:31] rval, rvall, i;

initial
begin

rval =101;
rvall = 2020;
$display("rval=%h hex =%d decimal",rval,rval);
$display("rval=%0h hex =%0d decimal" ,rval,rval);
$displayh("rval = %d",rval);
$display ("table of hex values");
$display("rval rvall");

$displayh(rval[0:7], rvall [0:7]);
$displayh(rval[8:15], rvall[8:15]);
$displayh(rval[16:23],rvall[16:23]);
$displayh(rval[24:31], rvall [24:31]);

$display("example of displayb follows");
$displayb(rval);
$display("example of displayo follows");
$displayo(rval);

$display("Simulation time is %t",$time);

$display("%d", 1'bx);
$display("“%h", 14'bx01010);
$display("%h %o", 12'b001xxx101x01, 12'b001xxx101x01);

$display("Current scope is %m");
end

endmodule

Example 8-1. $display usage with different methods of capturing design
data.

On simulating the above example, the standard out will display the following
result:
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rval=00000065 hex = 101 decimal
rval=65 hex =101 decimal
table of hex values
rval rval1
0000
0000
0007
65e4
example of displayb follows
00000000000000000000000001100101
example of displayo follows
00000000145
Simulation time is 0
Current scope is disp
x
xxXa
XXX lx5X

Thus, the normal $display is used to display values using formatting strings. The
$displayh, $displayb, and $displayo are used to display values in hex, bin, and octal
format and are more useful for creating output tables. The $write set of tasks is same
as $display except that no newline is added at the end of this task. This helps in
creating output from different places in the description and put it on one line.

8.2.3 Syntax and Format Details

display_tasks ::= display_task_name(list_of_arguments)
display_task_name ::= $display | $displayb | $displayh

| $displayo | $write | $writeo | $writeh | $writeb

The following table shows the format specifiers.

%h hexadecimal
%b binary
%o octal
%d decimal
%c ascii character
%v net strength
%m module name (full hierarchical)
%s string
%t current time format
%e real number in exponent form
%d real number in decimal form
%g display real in the 2 formats but shortest width

The following table shows special characters used in the
string part of $display(“string",..). These will help
special control over output.
'%o' modifier will take away heading spaces or zeroes, e.g., '%od' or '%ob'
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\n NewLine
\t Tab character
\\ \ character
\"   " character
\o a character in octal 1-3 digits
%% is the % character

Explanation

Amongst the % format specifiers, both %d and %t can be used to obtain time.
Originally, time was 32-bits wide in Verilog HDL and %d was used to get the value.
However, the simulations of complex systems were done for longer times and the time
was extended to be 64 bits (also competitive with VHDL implementations). A new
format specifier %t was added. Thus, the older %d specifiers continued to work as
they are while %t now will support upto 20 digits (full 64-bit value).

Size considerations

The $display set of tasks allocate spaces needed for maximum value for that
expression. For the example in 9.2.2, we can see the results with leading 0s for hex as
the size is 32 bits or 8-hex digits. To use minimum size(with no leading spaces or 0s),
use %0h, %0d, %0b and %0o format specifiers.

X And Z Considerations

When all bits are unknown, 'x' is displayed . When all bits are high impedance, 'z' is
displayed. For partial unknowns, 'X' is displayed and for partial high impedances, 'Z' is
displayed. See last three lines of the example 8-1 above.

8.3 Monitor System Tasks

8.3.1 Overview

A task is provided to trace or monitor the values of nets and regs as they change.
When a $monitor task is invoked with one or more arguments, the simulator sets up a
mechanism whereby each time a variable or expression in the argument changes value,
the entire argument is displayed as in $display.

This trace can be turned on or off by special control tasks $monitoron and
$monitoroff. The $monitoroff turns off displaying the monitored values and
$monitoron turns it back on.

The $strobe set of tasks have functionality like $display but have the characteristic
of $monitor that the values displayed are at the end of the simulation time after all
changes for that time are complete.
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8.3.2 Examples

module test_adder;
// test a 2 bit adder using $monitor
reg[1:0] in1, in2;
wire [2:0] out;
adder a (out, inl, in2);
initial
begin

$monitor("time=%d out=%d in1=%d in2=%d",$time,out,in1,
in2);

in1=0;
in2 = 0;
repeat (4)
begin

repeat(4)
#5

in2 = in2+l;
in1 = in1+1;
end

end

initial
begin

#30 $monitoroff;
#15 $monitoron;
#30 $finish;

end

endmodule

module adder(o,il,i2);
output [2:0]o; input [l:0]il, i2;
assign o = il + i2;

endmodule

Example 8-2. Capturing simulation results of a design selectively with
$monitor and $monitoron/off.

This example produces the following output:
time= 0 out=0 in1=0 in2=0
time=   5 out=l  in1=0 in2=l
time= 10 out=2 in1=0 in2=2
time= 15 out=3 in1=0 in2=3
time= 20 out=l in1=1 in2=0
time= 25 out=2 in1=1 in2=1
time= 45 out=3 inl=2 in2=l
time= 50 out=4 inl=2 in2=2
time= 55 out=5 inl=2 in2=3
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time= 60 out=3 in1=3 in2=0
time= 65 out=4 in1=3 in2=1
time= 70 out=5 in1=3 in2=2
Exiting VeriWell for Win32 at time 75

From time = 0 to time = 25, $monitor records changes in its parameters. At 25,
$monitoroff takes effect and no monitor outputs are produced till time 45 when the
$monitoron again kicks in. The tasks of $monitoroff and Smonitoron are useful in a
debugging session(especially for a long run) when one can selectively turn this on
and off around problem times, saving one from unwieldy large output.

8.3.3 Syntax

monitor_tasks ::= monitor_task_name[(list_of_arguments)]; |
$montoron;|
$monitoroff;

monitor_task_name ::= $monitor| $monitorb| $monitorh| $monitorf
| $strobe | $strobeb | Sstrobeh | $strobeo

8.4 File Management

Verilog provides ability to perform input/output from files. The files are opened and
closed using $fopen and $fclose system tasks. These are similar to open() and close()
calls in “C", although the return values are binary and can be combined to perform
ios from multiple files at the same time, unlike "C". The opened files can then be
used in display and monitor tasks which have variations like $fmonitor and $fdisplay
with first argument as file descriptor. Again this is similar to printf and fprintf in
"C". The file descriptors in Verilog are also known as multi-channel-descriptors.

8.4.2 Examples

In the following example, we modified the Example 8-2 to redirect the output to file
adderout.mon. This is specially useful in a larger design where outputs from each
sub-part will be saved in a different file and then can be checked for correctness
independently.

module test_adder;
integer f1;

// test a 2 bit adder using $fmonitor
reg[1:0]in1, in2;
wire [2:0] out;

adder a (out, in1, in2);
initial
begin

8.4.1 Overview



SYSTEM TASKS AND FUNCTIONS 161

f1= $fopen("adder_out.mon");
$fmonitor(fl,"time=%d out=%d inl=%d in2=%d",$time,out,

in1,in2);
inl = 0;
in2 = 0;

// remaining example is same as before
end

endmodule
module adder(...);

endmodule

Running this will now produce no results on screen but will create a file
adder_out.mon with the same output as before. $fmonitor also has the advantage of
creating multiple monitors while only one $monitor can be active any time.

8.4.3 Syntax

Example 8-3. File management in capturing results of simulating a design.

file_open_function ::=
integer $fopen("filename");

file_close_task ::=
$fclose(multi_channel_descriptor);

file_output_tasks ::=
file_output_task_names(multi_channel_decriptor,

list_of_arguments);
file_output_task_name ::=

$fdisplay | $fdisplayb | $fdisplayh | $fdisplayo |
$fwrite | $ fwriteb | $fwriteh | $fwriteo |
$fstrobe | $fstrobeb | $fstrobeh | $fstrobeo|
$fmonitor | $fmonitorb | $fmonitorh | $fmonitoro

8.5 File Input Into Memories

8.5.1 Overview

The only form of input from files provided in IEEE 1364 Verilog HDL system tasks
is the reading of input patterns into a memory. These tasks have names of
$readmemb and $reademh for reading binary and hex values. As the regs and
memories are only bit-valued this is meaningful.

8.5.2 Example

module test_adder;
reg [3:0] mem [1:16];
// test a 2 bit adder using $fmonitor

.........

....
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reg [l:0]inl,in2;
wire [2:0] out;
adder a (out, inl,in2);
initial

$readmemh("mem.dat", mem);
initial
begin

$monitor("time=%d out=%d inl=%d in2=%d",$time,out,inl,in2);
for(i=l;i<=16;i = i+l)

#5 {inl, in2 } = mem[i];
end

endmodule
// Insert the adder module definition from 9.3.2 here
//mem.dat file contains 16 lines with 0 to f values

Example 8-4. Reading input from files – $readmem usage.

This will result in same output as in section 9.3.2 once the remaining lines from
that example are added back here.

8.5.3 Syntax

load_memory_tasks ::=
$readmemh("file_nam", memory_name, [,start_addr, end_addr]]);
|$readmemb("file_nam", memory_name, [,start_addr, end_addr]]);

The data file contains data and addresses where address begin with symbol @.

8.6 Simulation Time Functions

The functions $time and $stime provide the simulation time values. These can be
either displayed using %d(32 bit) or %t (64 bit) format or used in expressions.
Examples of usage of $time is already shown in $monitor example in section 8.3.2
and other places.

8.7   Simulation Control Tasks

8.7.1 Overview

Verilog provides ability to break and also to end simulation in the form of tasks. This
enables stopping or ending simulation based on certain conditions from within the
model. This is also useful in test-bench and debugging aspects of simulation The
tasks $stop breaks the simulation and brings it in interactive mode. The task $finish
ends the simulation.

8.7.2 Examples

// Here is an example of adder which is being developed
// We perform $stop if the output goes to x. This way
// debugging can be performed on the system right away
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// without having to start from the beginning again.

module test_adder;

// All lines here are same as in the 9.3.2
// Add the following always block to this module

always @out
if (out=== 'bX)

$stop;

endmodule

module adder(...);

endmodule

Example 8-5. Simulation control tasks – $stop and $finish.

8.8 Waveform Interface (VCD Files)

8.8.1 Overview

Verilog provides a set of tasks to save the value-changes in a file that are accessed by
a waveform viewer to display the results in the form of a waveform display. These
files are called value change dump files (VCD). The tasks that relate to these are
$dumpfile and $dumpvars. These files are ASCII files and can be used by other post-
processing tools such as tester interface tools as well.

Like the monitor on and off controls, $dumpon and $dumpoff stop and restart the
dumping operations.

8.8.2 Examples

// This is same example as in 9.3.2, but the dumping
// tasks are added after $monitor statement
module test_adder;

// test a 2 bit adder using $monitor
reg[l:0] in1, in2;
wire [2:0] out;
adder a (out, in1, in2);
initial
begin

$monitor("time=%d out=%d in1=%d in2=%d",$time,out,
in1,in2);

$dumpfile("ex_dump");
$dumpvars;
inl = 0;
in2 = 0;

.......

..........
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end

initial
begin

#30 $monitoroff;

end

endmodule

module adder(o,il,i2);

endmodule

Example 8-6. Creating a waveform data file using $dumpvars and related
system tasks.

The dumpfile ex_dump is produced by this. The files contents are shown below:
$date
Mon Jul 0l 11:18:41 1996

$end
$version

VeriWell for Win32 2.0.5
$end
$timescale

1s
$end

$scope module test_adder $end
$var reg 2 ! in1 [1:0]$end
$var reg  2 "  in2 [1:0] $end
$var wire 3 # out [2:0] $end

$scope module a $end
$var wire 2 $ i2[1:0] $end
$var wire 2 % il[l:0] $end
$var wire 3 & o [2:0] $end
$upscope $end

$upscope $end

$enddefinitions $end
#0
$dumpvars
b0 &
b0 %
b0 $
b0 #

..........

...........



SYSTEM TASKS AND FUNCTIONS 165

#10

#15

8.8.3 Syntax

dumpfile_task ::= $dumpfile(“modulel.dmp");
dumpvars_task ::= $dumpvars(levels[,list_of_modules_or_variables]);
list_of_modules_or_variables ::= module_or_variable { ,

module_or_variable}

module_or_variable ::= module_identifier | variable_dentifier

8.9 Exercises

1.

2.

3.

4.

What is the difference between $display and $write system tasks?

Write the format specifiers in $display and $monitor to :

indicate strength values

indicate current hierarchical instance and module name

display real numbers with shortest widths

Write a simulation capture module using system tasks for capturing the value
changes at simulation times 25, 40 and 55 that is stabilized at that time using
$fstrobe tasks. Use a filename “strobe_out" for writing the results[Use the
Example 8-2 without the $monitor line]

Run Example 8-6 on the simulator and view the waveforms on the simulator
provided with the book.

.....

....

...

...



9 COMPILER DIRECTIVES

9.1 Introduction

The Compiler directives direct the pre-processor part of Verilog Parser or Simulator.
These are very similar to "C" pre-processor directives which transform the input code
into an output that is processed based on the directives. Some of the processing
involves substitution of strings, conditional inclusion and exclusion of code and
setting defaults. The character of "`" [back-quote] precedes all compiler directives.
The scope of a directive is independent of module definitions; the scope extends from
the point where the directive occurs to the next compiler directive that changes the
prior directive. This may go across files or to the end of file or all files.

The key compiler directives are:

` include  ----  include another file here
`define    ----  define a macro[symbol]
`undef  ----  undefine a symbol

`ifdef ----  These three are conditional compilation
`else directives
`endif

`default_nettype ----  define a default net type
for the entire design

`timescale ----  Define the timescale to be used
for the subsequent part of design

`resetall ----  reset all directives back to
original default values
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`celldefine --- These define a cell name used by
`endcelldefine certain PLI routines

The compiler directives apply globally to the design until they are redefined or in
case of undef undefined. They have an effect of separating the features from the core
language, and also can save significant compilation time.

9.2 'include

9.2.1 Introduction

Verilog models can be organized into different files and then compiled together as
one unit. One of the useful features in this regard is the `include compiler directive.
A file whose name follows the `include compiler directive will be included during
the compilation of the model in the preprocessing phase and carried over to the
subsequent phases till the end of the simulation as if the other file was part of the
including file.

9.2.2 Example

`include "/design/library/cells.v"
`include "/design/system/rest_of_system.v"
module my_design(....);

endmodule

Example 9-1.  `include compiler directive.

In the above example, the library elements in file cells.v and the definition of rest
of the system is included from other directories and files to add to the module being
designed and tested.

9.2.3 Syntax

include_compiler_directive ::= `include "filename"

9.3 `define and `undef

9.3.1 Introduction

Macros or word replacements can be defined in the Verilog model using `define and
`undef compiler directives.

9.3.2 Examples

//Define size of the word and use it for declarations
`define WORDSIZE 64
reg [WORDSIZE-1 : 0] data_bus;

....
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//Define size of RAM and use both defines
`define RAMSIZE `hffffffff
reg [WORDSIZE -1 : 0] ram[RAMSIZE-l:0];

// Define a macro with parameters and use it
`define max(a,b) ((a) > (b) ? (a): (b))

n = `max(p+q, r+s);

`undef RAMSIZE f

9.3.3 Syntax

text_macro_definition ::=
`define text_macro_name macro_text

text_macro_name ::=
text_macro_identifier[(list_of_formal_arguments)]

list_of_formal_arguments ::=
formal_arguments_identifier{,formal_arguments_identifier}

text_macro_usage ::=
`text_macro_identifier( list_of_actual_arguments)

list_of_actual_arguments ::=
actual_argument{,actual_arguments}

actual_argument ::= expression

undefine_compiler_directive ::=
`undef text_macro_name

9.4 `ifdef,`else,`endif

9.4.1 Example

module and_op (a, b, c);
output a;
inout b, c;
// view of design RTL/GATE is chosen using ifdef

`ifdef RTL
wire a = b and c;

`else
and a1(a, b, c);
`endif

.........
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endmodule

Example 9-2. Compiling code conditionally based on prior macro
definitions using `ifdef.

In the above example, the text-macro RTL must be defined prior to the module if
RTL view is desired. The lines between `ifdef and `else [line starting with wire in
this case] is selected and lines between `else and `endif are ignored [and line here].

9.4.2 Syntax

conditional_compiler_directive ::=
`ifdef text_macro_name
first_group_of_lines
[`else
second_group_of_lines
`endif]

9.5 `default_nettype

9.5.1 Example

`default_nettype trireg
module switch_sim(,,,);

nmos(out0, in1, in2);
nmos(out, in1, out0);                 ..............

endmodule

Example 9-3. default_nettype compiler directive.

In the above example, all nets that are not declared are taken to be of type trireg.
As this is defining a transistor-level module that is a capacitive network, this is
appropriate.

9.5.2 Syntax

default_nettype net_type ::=
`default_nettype net_type

net_type:::=
wire | tri | tri0 | wand | triand | tri1
| wor | trior | trireg

9.6 `timescale

9.6.1 Example

`timescale 1ns/1ps
module test;
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reg set;
parameter d = 1.55
initial

begin
#d set = 0;
#d set = l;
end

endmodule

The `timescale tells the system to use 1 ns for all reporting and internally use 1 ps
for resolution of time in this part of design. Thus, the value for parameter d is scaled
to a delay of 1.55 ns. Had we used timescale directive `timescale 10ns/1ns, 1.55
would mean 15.5 or 16 ns. The first part of `time-scale gives the time-units and the
second part gives the time-precision.

9.6.2 Syntax

time_scale_compiler_directive ::=
`timescale time_unit/time_precision

The time unit and precision are defined using the following units:

s (seconds), ms (milliseconds), us (microseconds) ns (nanoseconds), ps (picoseconds)
fs (femtoseconds)

9.7 `resetall

This resets all compiler directives to default values. This is also a way to assure your
part of design not to be affected by other designs combined with it during system
simulation.

9.8 Exercises

1.

2.

The macro definitions with parameters are similar to function definitions. What
is the advantage of using macros over functions?

Perform simulations of the example in section 7-1 of the structural and RTL
descriptions by using `ifdef compiler directive. Add more directives so that one
can simulate both together as well just by setting the right compiler directive.



10 INTERACTIVE SIMULATION
AND DEBUGGING

10.1 Introduction

Verilog language was developed concurrently with a fully interactive simulator and
debugger from the beginning. Thus, abilities to process the simulation in steps with
trace and waveforms is available both in an interactive manner and also in a post-
processing manner seamlessly through Verilog HDL. These facilities are provided in
two ways:

by system tasks and functions and
interactive commands

10.2 System Tasks and Functions

10.2.1 Previously Covered

Some of these covered in Chapter 9 deal with tasks to perform:
display to the output ($display)
monitor the value-changes as textual output($monitor)

send the display and monitor results to files ($fdisplay, $fmonitor etc.)

stop or end the simulation in interactive mode - $stop or $finish

generate data for waveform display - $dumpvars
These can also be used in interactive mode. In general, Verilog simulators should

enable any behavioral statement to be entered on the command line in interactive
simulation.

a.
b.



10.2.2 Additional Tasks

Some of the following are implementation dependent, but are present in several good
implementations of Verilog:

$gr_waves
Like $monitor - except create waveforms

$showvars
Show the fanins of a signal.
In debugging the functioning of a multi-driver net, this is very helpful.

$keys file_name Save the keystrokes into file_name; this can then be
rerun with this file.

$log file_name
Save the log into the log_file. This can be later analyzed for correctness.

10.3 Commands

Verilog simulator will accept the following commands in the interactive mode. Most
simulators will provide Graphical User Interface with menu commands to cover these
functions.

Single Step -';'
This will advance the simulation one statement at a time. Ideally
this should step through 1 event at a time.

Trace  -','
Display each update and evaluate events being executed by the
simulator.

Break - CTRL-C
Break the simulation and bring it in interactive mode.

sim n
simulate for n time units

continue -.
Continue simulation

10.4 Browser Tools

Most simulators will provide a browser that allows traversal of a design from top to
bottom, and then in each part of the design get a list of signals defined there. These
signals can then be selected for displaying values at command line or in the
waveform window or for use with other tool within the tool-set.

10.5 Code Coverage

Several tools are available to check for code coverage of Verilog simulations. These
will perform block-analysis and path-analysis apart from simple line by line analysis.
This is useful for testing the adequacy of tests and is a good debugging tool.
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2.
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Add code to check for V at various times at the output for different examples
seen so far and then add $stop and debug the reasons for production of ‘x.
Specially examples where different levels of abstractions are connected may
produce x as transients and this should be confirmed that these indeed are
expected values.

Several waveform tools perform data compression of vcd dump files. For larger
designs, this is significant. Utilize these facilities if available in your toolset.
Some software (from Veritools Inc., for example) is available on the internet on
a trial basis.



11 SYSTEM EXAMPLES

11.1 Introduction

In this chapter, we give system examples and discuss their modeling. The
capabilities of Verilog HDL presented until now are well-suited to model systems
where each of the system component is either behavioral or RTL or structural or
external.

11.2 Example 1:8085 Based System: SioBS.V

The high level block diagram is shown on the next page. This consists of a model of
Intel 8085 8-bit microprocessor, 8251 serial IO controller, a ram model and an
initialization module. These are modeled at the behavioral level. The system module
s85 instantiates the four modules—i8085a which is the microprocessor, i8251 which
is the 8251 serial IO controller, the ram85a which is a ram model, and the initial
block that initializes the system. The models for the 8085 and 8251 contain salient
features of these model and the complete models can be simulated using the online
model provided on the disk with the book.
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All of these models are at the behavioral level.
Following are excerpts from the system with some explanations:

module s85; // system module
reg [8:1] dflags; wire  s0, ale, rxd, txd;
tri[7:0] ad, a;
tri1 read, write, iomout;
reg clock, trap, rst7p5, rst6p5, rst5p5,

intr, ready, nreset, hold, pclock;
//The system has 3 main components as below

ram85a r0(ale, ad, a, write, read, iomout);
intel_8085a i85(clock, , , , , trap, rst7p5, rst6p5, rst5p5, intr, ,
ad, a, s0, ale, write, read,, iomout, ready, nreset,
, , hold);

i8251  p1(ad, rxd, , pclock, write, !iomout, a[0], read, ,
, , , , txd, , !nreset, , , , pclock, );

defparam p1.instance_id = 8'h01;
// The block below provides for initialization and resetting

initial
begin

clock = 0;
#500 nreset = 1; ready = 1;
@(posedge i85.haltff) @i85.ec2;

disable clockwave;     ......
end
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endmodule // s85

The i8085a module describes the instruction cycles for various instructions. Thus,
any program in the assembly language (converted to hex or binary) can be run on
this model, and various registers and nets can be observed with this. The ram loads
these programs and connects with CPU to make this happen. A monitor and
keyboard are connected via the serial interface providing additional input-output into
the system.

The excerpts from the 8085 model are given below. These include descriptions of
all blocks that form distinct modeling principles. For the instruction processing, a
few examples are included here as the principles of modeling instructions are similar
to all instructions but the actual code size can be quite large for the complete
instructions set with all data types and all other variations. The entire model is
included in the disk or CDROM included with the book.

/* Behavioral description of the Intel 8085a microprocessor */
module intel_8085a (clock, x2, resetff, sodff, sid, trap,

rst7p5, rst6p5, rst5p5, intr, intaff, ad, a, s0, aleff,
writeout, readout, s1, iomout, ready, nreset, clockff, hldaff, hold);

output resetff, sodff, intaff, s0, aleff,
writeout, readout, s1, iomout, clockff, hldaff;

inout[7:0] ad, a;
input clock, x2, sid, trap, rst7p5, rst6p5, rst5p5,

intr, ready, nreset, hold;
reg[15:0] pc/*program counter*/, sp/*stack pointer*/,addr;
reg[8:0] intmask; // interrupt mask and status
reg[7:0] acc/*accumulator*/ regb/*general registers*/, regc,

regd, rege, regh, regl, ir /*instruction register*/, data/*data*/;
reg aleff, /* address latch enable*/ s0ff, /*status line 0 */
slff/*status line 1*/,....., cc/*carry condition code*/;

tri[7:0] ad = dcontrol ? (s ? data: addr[7:0]): 'bz,
event ec1 /*clock 1 event*/, ec2/*clock 2 event*/

// internal clock generation
always begin

@(posedge clock) -> ec1;
end
integer instruction; // instruction count

always begin:run_processor
#1 reset_sequence;
fork

execute_instructions;
wait(!nreset)

@(posedge clock) -> ec2;

// Instructions executed
// in parallel with reset

@ec2 disable run_processor; // control. Reset will
join // disable run_processor

end // and all tasks



task reset_sequence;
begin

wait(!nreset)
fork

begin
$display("Performing 8085(%m) reset sequence");
read = 1;

disable check_reset;
end
begin:check_reset

wait(nreset) // Check, in parallel with the
disable run_processor; // reset sequence, that nreset

end // remains at 0.
join
wait(nreset) @ecl @ec2 resetff = 0;

end
endtask

/* fetch and execute instructions */
task execute_instructions;
forever begin

instruction = instruction + 1;
@ecl /*clock cycle 1 */ addr = pc; s = 0; iomff = 0;

@ec2 aleff = 0;
@ec1 /*clock cycle 2*/ read = 0; dcontrol = 0;
@ec2 ready_hold;
@ec2 /*clock cycle 3*/ read = 1; data = ad; ir = ad;
@ec1 /*clock cycle 4*/

if(do6cycles(ir)) begin
// do a 6-cycle instruction fetch
@ecl @ec2 // conditional clock cycle 5

if(hold) begin

dcontrol = 0; @ec2 hldaff = 1;
end
else begin

end
@ecl; // conditional clock cycle 6

end

if(holdff) holdit;
checkint;
do_instruction;

if(validint) interrupt;
end
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endtask

function do6cycles;

endfunction

task checkint;
begin

if(rst6p5)
if((intmask[3] == 1) && (intmask[l] == 0)) intmask[6] = 1;

else
intmask[6] = 0;

if({intmask[7], intmask[3:2]} == 6)
intmask[4] = 1;

else
intmask[4] = 0;

validint = (intmask[6:4] == 7) | trapff | intr;
end
endtask

/* memory read */
task memread;
output[7:0] rdata;
input[15:0] raddr;
begin

@ecl
addr = raddr;
aleff = 1;

@ec2
aleff = 0;

@ecl
dcontrol = 0;
if(int)

intaff = 0;
else

read = 0;
@ec2

ready_hold;
checkint;

@ec2
intaff = 1;
read = 1;
rdata = ad;

if(holdff) holdit;
end
endtask
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task memwrite;

endtask

task ioread;

endtask

task iowrite;

endtask

task do_instruction;
begin

pc = pc + 1;
@ec2 // instruction decode synchronized with clock 2 event

case(ir[7:6])
0:

case(ir[2:0])
0: newops;
l : if(ir[3])addhl;elselrpi;
2: sta_lda;
3: inx_dcx;
4: inr;
5: dcr;
6: movi;
7: racc_spec;

endcase
1:

move;
2:

rmop;
3:

case(ir[2:0])
0,
2,
4: condjcr;
1: if(ir[3]) decodel; else pop;
3: decode2;
5: if(ir[3]) decode3; else push;
6: immacc;
7: restart;

endcase
endcase

end
endtask

/* decrement register and memory contents */
task dcr;
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case(ir[5:3])
0: dodec(regb); // DCR B
1: dodec(regc); // DCR C

6: // DCR M
begin

memread(data, {regh, regl});
dodec(data);
memwrite(data, {regh, regl});

end

7:dodec(acc); // DCR A
endcase

endtask

/* enabled only from decrm */
task dodec;
inout[7:0] sr;
begin

cac = sr[3:0] == 0;
sr = sr -1;
calpsz(sr);

end
endtask

endmodule

Example 11-1. 8085 microprocessor, ram, and 8251 serial IO controller
system – behavioral model.

11.3 Example 2: R4200

/**************************************************************************

This is the top level module which connects the processor and the
system controller together and also provides the stimulus to test
the chips.

**********************************************************************************/

module stim;

wire [63:0] SysAD;
wire [63:0] CS_AD;
wire [7:0] SysADC;
wire [7:0] CS_ADC;
wire [8:0] SysCmd;
wire [8:0] CS_cmd;

SYSTEM EXAMPLES 183

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .
......................



wire SysCmdP,CS_cmd_P,ext_ready;
wire ValidOut,Release,SC_req_valid,CS_req_valid;

reg [8:0] syscmd;
reg [63:0] sysad;

reg ValidIn,ExtRqst,RdRdy,WrRdy,MasterClock,Reset;
reg read,respond_toread,send_address,send_data;

always #10 MasterClock = ~MasterClock;

assign SysAD = ValidIn? 64'bz:sysad;
assign SysCmd = ValidIn? 8'bz:syscmd;

processor
p1(CS_cmd,CS_AD,CS_cmd_P,CS_ADC,CS_req_valid,SC_req_valid,MasterClock,ext_ready
,Reset);

sys_cntrl
s1(SysAD,SysADC,SysCmd,SysCmdP,ValidIn,ValidOut,ExtRqst,Release,RdRdy,

WrRdy,MasterClock,Reset,CS_req_valid,CS_AD,CS_ADC,CS_cmd,CS_cmd_P,
SC_req_valid,ext_ready);

initial begin
ValidIn = 1;
ExtRqst = 1;
RdRdy = 0;
send_address=0;
send_data=0;
WrRdy = 0;
read = 0;
respond_toread = 0;
MasterClock = 0;
Reset = 0;
#3 Reset = 1;

$monitor("Time=%0d,SysAD =

%x,SysADC=%x,SysCmd=%x,ValidIn=%x,ValidOut=%x,ExtRqst=%x,Release=%x,RdRdy=
%x,WrRdy=%b,Reset=%b,

CS_req_valid=%b,CS_AD=%x,CS_ADC=%x,CS_cmd=%x,

SC_req_valid=%b,ext_ready=%b\n",$time,SysAD,SysADC,SysCmd,ValidIn,ValidOut,ExtRq
st,Release,RdRdy,WrRdy,Reset,

CS_req_valid,CS_AD,CS_ADC,CS_cmd, SC_req_valid,ext_ready);
#700 ExtRqst = 0;
WrRdy=1; RdRdy=1;

end
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/* responding to a read request from the processor */
always @ (posedge MasterClock) begin

if(~ValidIn && respond_toread) begin ValidIn=1; respond_toread = 0;end
if (respond_toread) begin

sysad =255;
syscmd=257;
ValidIn = 0;

end
if (~Release && SysCmd==1) begin read = 0;respond_toread = 1;end

end

/* Setting and writing an external write request. */

always @ (posedge MasterClock) begin
if(~ValidIn && send_data) begin ValidIn=1; RdRdy=0; WrRdy=0; send_data=0;end

if (send_data) begin
sysad =511;

syscmd=2;
ValidIn = 0;

end
if(send_address) begin send_address=0;

sysad =0;
syscmd=2;

send_data = 1;
ValidIn = 0;

end

if (!ExtRqst) begin
if (~Release) begin

ExtRqst=1;
send_address=1;

end
end
end

endmodule

/*************************************************************************/

/* Definition of the i/o ports of R4200 chip and implementation of the bus interface
protocol shown in fig 1.54 and 1.55 .

*/
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This is the system interface module. It implements the bus interface protocol and
interacts

with the processor chip.

CS: - Cache to the System Controller.

CS_req_valid - A valid request is in the CS_AD bus and CS_ADC command bus
and CS_cmd_P.

SC_req_valid - A valid request is in the CS_AD bus and CS_ADC command bus
and CS_cmd_P and System interface is driving it.

CS_cmd[8] - 0=Address cycle 1= Data cycle.
CS_cmd[7:0] - 1 Read, 2 Write.
SysCmd[7:0] -1 Read response, 2 Write request. 0 - Null

state: Indicates the state of the system controller.
ext_ready: Signalling the cpu_core that the external agent is ready to accept a

request.

The rest of the inputs and outputs are the same a give in Table 1-5.

******************************************************************/

module
sys_cntrl(SysAD,SysADC,SysCmd,SysCmdP,ValidIn,ValidOut,ExtRqst,Release,RdRdy,

WrRdy,MasterClock,Reset, CS_req_valid,CS_AD,CS_ADC,CS_cmd,CS_cmd_P,
SC_req_valid,ext_ready);

inout [63:0] SysAD;
inout [63:0] CS_AD;
inout [7:0] SysADC;
inout [7:0] CS_ADC;
inout [8:0] SysCmd;
inout [8:0] CS_cmd;
inout SysCmdP;
inout CS_cmd_P;
input ValidIn,ExtRqst,RdRdy,WrRdy,MasterClock,Reset,CS_req_valid;
output ValidOut,Release,SC_req_valid,ext_ready;

wire [63:0] SysAD;
wire [63:0] CS_AD;
wire [7:0] SysADC;
wire [7:0] CS_ADC;
wire [8:0] SysCmd;
wire [8:0] CS_cmd;
wireSysCmdP;
wire CS_cmd_P;

/**********************************STATES***************/
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`define idle 4'h0
`define send_rd_add 4'h1
`define wait_rd_data 4'h2
`define send_wr_add 4'h3
`define send_wr_data 4'h4
`define ext_rd_response 4'h5
`define ext_wr_add 4'h6
`define ext_wr_data 4'h7
`define ext_null_req 4'h8
`define ext_req_asserted 4'h9

reg [3:0] state;
reg [1:0] ready_for_read;
reg [1:0] ready_for_write;
reg rd_pending,ext_ready;

assign SysAD = (state= =`send_rd_add || state= =`send_wr_add ||
state= =`send_wr_data)? CS_AD:

64'bz;
assign SysADC = (state= =`send_rd_add || state= =`send_wr_add ||

state= =`send_wr_data)? CS_ADC:
8'bz;
assign SysCmd = (state= =`send_rd_add || state= =`send_wr_add ||

state= =`send_wr_data)?  CS_cmd:
9'bz;
assign SysCmdP = (state= =`send_rd_add || state= =`send_wr_add ||

state= =`send_wr_data)? CS_cmd_P
: 1'bz;
assign CS_AD = (state= =`ext_rd_response || state= =`ext_wr_add ||

state= =`ext_wr_data)? SysAD:
64'bz;
assign CS_ADC = (state= =`ext_rd_response || state= =`ext_wr_add ||

state= =`ext_wr_data)? SysADC:
8'bz;
assign CS_cmd = (state= =`ext_rd_response || state= =`ext_wr_add ||

state= =`ext_wr_data)? SysCmd:
9'bz;
assign CS_cmd_P = (state= =`ext_rd_response || state= =`ext_wr_add ||

state= =`ext_wr_data)?
SysCmdP: 1'bz;

assign ValidOut = (state= =`send_rd_add || state= =`send_wr_add ||
state= =`send_wr_data)? 0:1;

assign Release = (state= =`send_rd_add || state= =`ext_req_asserted)? 0: 1;
assign SC_req_valid = (state= =`ext_rd_response || state= =`ext_wr_add || state = =

`ext_wr_data)?
1:0;

initial begin
state = 0;
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ready_for_read = 0;
ready_for_write = 0;
rd_pending=0;
ext_ready = 0;
end

always @(posedge MasterClock) begin

// giving two cycle delay for the external interface to accept read and write requests
// after asserting acceptance

if (RdRdy) begin ready_for_read = 0; end
else if (ready_for_read<2) ready_for_read= ready_for_read +1;

if (WrRdy) begin ready_for_write = 0; end
else if (ready_for_write<2) ready_for_write=ready_for_write+l;

if (ready_for_read = = 2 && ready_for_write = = 2) begin ext_ready=1; end
else ext_ready=0;

end

always @(posedge MasterClock) begin

case(state)
`idle: begin

if (CS_req_valid) begin
if(CS_cmd= =1 && ready_for_read= =2) state=`send_rd_add;
else if(CS_cmd= 2 && ready_for_write= 2) state = `send_wr_add;

end
else if(!ExtRqst) state = `ext_req_asserted;
end

`send_rd_add: begin
$display("!!! SYS_CNTRL: Sending rd address \n");
state = `wait_rd_data;
end

`wait_rd_data: begin
$display("!!! SYS_CNTRL: Waiting for data from external

interface\n");
if(!ExtRqst) begin

state = `ext_req_asserted;
rd_pending=1;

end
else if(!ValidIn) begin
$display("!!! SYS_CNTRL: External interface returning data\n");

state = `ext_rd_response;
end

end
`send_wr_add: begin
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state = ̀ send_wr_data;
end

`send_wr_data: begin
if (CS_req_valid && CS_cmd= =2) state=`send_wr_add;
else state=`idle;
end

`ext_rd_response: begin
$display("!!! SYS_CNTRL: External interface going back to idle after

rdresponse\n");
state = ̀ idle;

end
`ext_wr_add: begin

$display("!!! SYS_CNTRL: External agent sending wr address\n");
state = ̀ ext_wr_data;
end

`ext_wr_data: begin
$display("!!! SYS_CNTRL: External agent sending wr data\n");
if (rd_pending) state = ̀ wait_rd_data;
else state = `idle;
end

`ext_null_req: begin
if (rd_pending) state = `wait_rd_data;
else state = `idle;
end

`ext_req_asserted: begin
$display("!!! SYS.CNTRL: External agent asserted request\n");
if (!ValidIn && SysCmd = = 1) state=`ext_rd_response;
else if(!ValidIn && SysCmd = = 2) state = `ext_wr_add;
else if(!ValidIn && SysCmd = = 0) state = ̀ ext_null_req;
end

default: state = 0;

endcase
end

endmodule

/***************************************************************************

This is the processor module. This module has the instruction and data caches inbuilt.
When a Id/st instruction is issued, it checks if the location is present in the cache, if it is
present in the cache then, load the data immediately else request it from the external memory,
through the external agent.

The processor module reads the instructions from a file called test.mem and executes
them sequentially.

***************************************************************************/
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module processor
(Dcmd,Dbus,DcmdP,DbusC,CS_req_valid,req_valid_in,MasterClock,ext_ready,Reset);

inout [8:0] Dcmd;
inout [7:0] DbusC;
inout [63:0] Dbus;
inout DcmdP;
output CS_req_valid;
input req_valid_in ,Reset;
input MasterClock,ext_ready;

reg req_valid_out;
wire [63:0] Dbus;
wire [8:0] Dcmd;
wire CS_req_valid;

/******* Define opcodes for instructions *****************/
/** R-Format Insts **/
`define  ADD 6'b100000
`define ADDU 6'b100001
`define  AND 6'b100100
`define  OR 6'b100101
`define  SLL 6'b000000
`define  SLLV 6'b000100
`define  SRA 6'b000011
`define  SRAV 6'b000111
`define  SRL 6'b000010
`define  SRLV 6'b000110
`define  SLT 6'bl01010
`define SLTU 6'bl01011
`define  SUB 6'b100010
`define  SUBU 6'b100011
`define  XOR 6'bl00110
`define  NOR 6'b100111
`define  MFHI 6'b010000
`define  MFLO 6'b010010
`define  MTHI 6'b010001
`define MTLO 6'b010011
/**/
/** I-Format Insts **/
`define ADDI 6'b001000
`define  ADDIU 6'b001001
`define  ANDI 6'b001100
`define  ORI 6'b001101
`define  XORI 6'b001110
`define SLTI 6'b001010
`define  SLTIU 6'b001011
`define  LUI 6'b001111
`define LB 6'b100000
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`define LBU 6'bl00100
`define LH 6'b100001
`define LHU 6'b100101
`define LW 6'b100011
`define LWL 6'bl00010
`define LWR 6'b100110
`define SB 6'b101000
`define SH 6'b101001
`define SW 6'bl01011
`define SWL 6'bl01010
`define SWR 6'bl01110
/**/
/** Multiply and divide **/
`define DIV 6'b011010
`define DIVU 6'b011011
`define MULT 6'b011000
`define MULTU 6'b011001
/**/
`define HALT 6'b000001
/**/
/** Jumps and Branches **/
`define BEQ 6'b000100
`define BNE 6'b000101
`define BLEZ 6'b000110
`define BGTZ 6'b000111
`define BLTZ 5'b00000
`define BGEZ 5'b00001
`define BLTZAL 5'b10000
`define BGEZAL 5'b10001
`define J 6'b000010
`define JAL 6'b000011
`define JR 6'b001000
`define JALR 6'b001001

`define fetch 0
`define decode 1
`define execute 2
`define br_exe 3
`define mem_fetch 4
`define complete 5

reg [7:0] data_cache[0:8191]; /* 8kbyte data cache */
reg [31:0] inst_cache[0:4095]; /* 16kbyte inst cache */

reg [50:0] data_tag[0:8191]; /* 8kbyte data tag */
reg data_valid[0:8191]; /* 8kbyte data cache valid bit.*/

/* Indicates if the data is available */

reg [31:0] inst_buffer; /* inst currently executed */

SYSTEM EXAMPLES 191



Chapter 11

reg [63:0] FX_GPR[0:31],FP_GPR[0:31],MULT_HI,MULT_LO,PC;
reg [31:0] FCR[0:31];
reg LL_bit,cmdP,rd_data_done,rd_pending;
reg [7:0] cmdC;

reg [63:0] s1_contents,s2_contents,result,eff_address,rd_data;
reg[2:0] cpu_state;
reg[4:0] sa,rs,rt,rd,dreg;
reg[15:0] imm;
reg[25:0] target;
reg[8:0] cmd;
reg[63:0] ext_register;
integer opcode,opcode1 ,opcode2,line_valid,send_cmd;

integer k;
initial begin

for (k=0;k<32;k=k+1) begin
FX_GPR[k] =0;

end
for (k=0;k<8191;k=k+1) data_valid[k]=0;
PC=0;
cpu_state = 0;
rd_pending=0;
req_valid_out=0;
rd_data_done=0;
send_cmd=0;
cmdC=0;
$readmemh("test.mem",inst_cache);

end

assign Dbus = req_valid_out ? eff_address:64'bz;
assign Dcmd = req_valid_out ? cmd:9'bz;
assign DcmdP = req_valid_out ? cmdP:1'bz;
assign DbusC = req_valid_out ? cmdC:8'bz;
assign CS_req_valid = req_valid_out;

always @(!Reset)begin
cpu_state = 0;
end

always @(req_valid_in)
begin
if (rd_pending) begin

if(Dcmd==257)begin
rd_data = Dbus;
rd_data_done = 1;

end
else if(Dcmd==258) ext_register = Dbus;
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end
end

always @ (posedge MasterClock)
begin

if (Reset) begin
case(cpu_state)

`fetch: fetch_inst;
`decode: decode_inst;
`execute: execute_inst;
`br_exe: exe_br_inst;
`mem_fetch: exe_mem_inst;
`complete: complete_inst;
default: cpu_state=0;

endcase
end

end

task fetch_inst;
begin

$display("***********************FETCH****************************\n");
$display("!!!!!!PC=%0d,Inst = %x\n",PC,inst_cache[PC]);
inst_buffer = inst_cache[PC];
cpu_state = `decode;
end

endtask

task decode_inst;
begin

$display("-----------------------DECODE----------------------- \n");
opcode = inst_buffer[31:26];
rs = inst_buffer[25:21];
rt = inst_buffer[20:16];
imm = inst_buffer[15:0];
target = inst_buffer[25:0];
sa = inst_buffer[10:6];
rd = inst_buffer[15:11];
opcodel = inst_buffer[5:0];
opcode2 = rt;
s1_contents = FX_GPR[rs];
s2_contents = FX_GPR[rt];

/* Checking for branches in opcodes */
if (opcode =`BEQ || opcode=`BNE || opcode=`BLEZ ||

opcode=`BGTZ ||
opcode=`J || opcode=`JAL)
begin
cpu_state = ̀ br_exe;
end
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else if((opcode = =1)&& (rt= =`BLTZ || rt= =`BGEZ || rt= =`BLTZAL ||
rt==`BGEZAL))

begin /* Checking for branches in BCOND codes */
cpu_state = `br_exe;
opcode = rt;
end

else if((opcode == 0) && (opcodel ==`JR || opcode1 = =`JALR))
begin
cpu_state = `br_exe;
opcode= opcode1;
end
else
begin
cpu_state = `execute;
end

case (inst_buffer[31:26])
`HALT:begin

print;
$finish;
end

/*0: * Special*
case(inst_buffer[5:0])

`SLL,`SRL,`SRA,`SLLV,`SRLV,`SRAV,
`ADD,`ADDU,`AND, `SUB,`SUBU,`OR,
`SLT,`SLTU,`XOR,`NOR,`MFHI,
`MFLO, `MTLO, `MTHI, `MULT,`MULTU,
`DIV,`DIVU:

//opcode = inst_buffer[5:0];
endcase*/

endcase

end
endtask

task execute_inst;
integer j,signs;
reg[127:0] mult_result;

begin

$display("~~~~~~~~~~~~~~~~~~~~~~~~EXECUTE~~~~~~~~~~~~~~~~~~~~\n");

cpu_state = `complete;
case(opcode)
0: /* Special */

case(opcode1)
`SLL: result=s2_contents<<sa;
`SLLV: result=s2_contents<<s1_contents;
`SRL: result=s2_contents>>sa;
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`SRLV:result=s2_contents>>s1_contents;
`SRA:

begin
result=s2_contents;
for(j=0;j<sa;j=j+1)

begin
result=result>>1;
result={s2_contents[63],result[62:0]};
end

end
`SRAV:

begin
result=s2_contents;
for(j=0;j<s1_contents;j=j+1)

begin
result=result>>1;
result={s2_contents[63],result[62:0]};
end

end
`ADD:

begin
signs={s1_contents[63],s2_contents[63]};
case(signs)

0: result=s1_contents+s2_contents;

1: begin
s2_contents=0-s2_contents;
result=s1_contents-s2_contents;

end
2: begin

s1 _contents=0-s1_contents;
result=s2_contents-s1_contents;

end
3: begin

s1_contents=0-s1_contents;
s2_contents=0-s2_contents;
result=s2_contents+s1_contents;
result=0-result;

end
endcase

end
`ADDU: begin

result = s1_contents + s2_contents;
$display("********ExecutingADDU**********\n");

end
`SUB,̀ SUBU:

begin
$display("********ExecutingSUBU**********\n");

signs={s1_contents[63],s2_contents[63]};
case(signs)
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0: result=s1_contents-s2_contents;
1: begin

s2_contents=0-s2_contents;
result=s1_contents+s2_contents;

end
2: begin

s1_contents=0-sl_contents;
result=s2_contents+s1_contents;
result=0-result;

end
3: begin

s2_contents=0-s2_contents;
result=s2_contents-s1_contents;

end
endcase
end

`SLTU:
begin
$display("********Executing SLTU**********\n");

if(s1_contents<s2_contents)
result=1;
else
result=0;

end
`SLTIU:

begin
$display("********Executing SLTIU**********\n");

s2_contents = {{48{imm[15]}},imm[15:0]};
rd = rt;
if(s1_contents<s2_contents)
result=1;
else
result=0;

end
`SLT:

begin
$display("********Executing SLT**********\n");

signs={s1_contents[63],s2_contents[63]};
case(signs)

0:begin
if(s1_contents<s2_contents) result=1;
else result=0;

end
1:result=0;
2: result=1;
3:begin

if(s1_contents<s2_contents) result=0;
else result=1;

end
endcase
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end
`SLTI:

begin
$display("********ExecutingSLTI**********\n");

rd = rt;
s2_contents = {{48{imm[15]}},imm[15:0]};
signs={ s1_contents[63],s2_contents[63]};
case(signs)

0:begin
if(s1_contents<s2_contents) result=1;
else result=0;

end
1: result=0;
2: result=1;
3:begin

if(s1_contents<s2_contents)result=0;
else result=1;

end
endcase
end

`AND: result=s1_contents&s2_contents;
`OR : result=s1_contentsls2_contents;
`XOR : result=s1_contentsAs2_contents;
`NOR: begin

result=s1_contentsls2_contents;
result=~result;

end
`MULTU:

begin
mult_result=s1_contents *s2_contents;
MULT_HI = mult_result[127:64];
MULT_LO = mult_result[63:0];
end

`MULT: begin
signs={s1_contents[63],s2_contents[63]};
case(signs)

0: mult_result=s1_contents*s1_contents;

1: begin
s2_contents=0-s2_contents;
mult_result=s1_contents * s2_contents;
mult_result=0-mult_result;

end

2: begin
s1 _contents=0-s1 _contents;
mult_result=s1_contents*s2_contents;
mult_result=0-mult_result;

end
3: begin
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s1 _contents=0-s1 _contents;
s2_contents=0-s2_contents;
mult_result=s1_contents*s2_contents;
mult_result=0-mult_result;

end
endcase

MULT_HI = mult_result[127:64];
MULT_LO = mult_result[63:0];
end

`DIVU: result=s1_contents/s2_contents;
`DIV: begin

signs= {s1_contents [63] ,s2_contents [63]};
case(signs)

0: result=s1_contents/s2_contents;
1: begin

s2_contents=0-s2_contents;
result=s1_contents/s2_contents;
result=0-result;

end

2: begin
s1_contents=0-sl_contents;
result=s1_contents/s2_contents;
result=0-result;

end
3: begin

s1_contents=0-s1_contents;
s2_contents=0-s2_contents;
result=s1_contents/s2_contents;
result=0-result;

end
endcase

end
endcase

`ADDI:
begin
rd = rt;
s2_contents = {{48{imm[15]}},imm[15:0]};
signs={s1_contents[63],s2_contents[63]};
case(signs)

0: result=s1_contents+s2_contents;

1: begin
s2_contents=0-s2_contents;
result=s1_contents-s2_contents;

end
2: begin

s1_contents=0-s1_contents;
result=s2_contents-s1_contents;
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end
3: begin

s1_contents=0-s1_contents;
s2_contents=0-s2_contents;
result=s2_contents+s1_contents;
result=0-result;

end
endcase

end

`ADDIU: begin
rd = rt;
s2_contents = {{48{imm[15]}},imm[5:0]};
result = s1_contents + s2_contents;

$display("********ExecutingADDIU**********\n");
end

`ANDI:
begin
rd = rt;
s2_contents = {{48{imm[15]}},imm[15:0]};
result=s1_contents&s2_contents;
end

`ORI : begin
$display("********ExecutingORI**********\n");
rd = rt;
s2_contents = {{48{imm[15]}},imm[15:0]};
result=s1_contentsls2_contents;

end
`XORI : begin

rd = rt;
s2_contents = {{48{imm[15]}},imm[5:0]};
result=s1_contents^s2_contents;
end

`LUI: result=s2_contents<<16;

`LB,`LBU,`LH,`LHU,`SW,
`SW,`SH,`SB,`LW:

begin
cpu_state = ̀ mem_fetch;
rd = rt;

eff_address = s1_contents + {{48{imm[15]}},imm[15:0]};
end

endcase
end

endtask

task complete_inst;
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begin

$display("~~~~~~~~~~~~~~~~~~~~~~~~COMPLETE~~~~~~~~~~~~~~~~~~~~\n");
PC=PC+1;
case(opcode)

`MULT,`MULTU: cpu_state = ̀ fetch;
default:

begin
FX_GPR[rd] = result;
cpu_state = `fetch;
end

endcase
end

endtask

task exe_br_inst;

integer j;
reg[63:0] target_address;

begin
$display("-----------------------BRANCH EXECUTE------------------\n");
case(opcode)

`BEQ,`BNE,`BLEZ,`BGTZ,
`BLTZ,`BGEZ,`BLTZAL,`BGEZAL:

begin
target_address = {{48{imm[15]}},imm[15:0]};

end

`J,`JAL :
begin

target_address = {{38{target[25]}},target[25:0]};
end

endcase

case(opcode)
`BEQ:

begin
$display("***** Executing BEQ *****\n");

if (s1_contents==s2_contents)
begin
if(target_address[63]=l)
begin
target_address=0-target_address;
target_address=target_address/4;
PC=PC-target_address;
end
else

begin
target_address=target_address/4;
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PC=PC+target_address;
end

end
else PC=PC+1;

end
`BGEZ,`BGEZAL:

begin
if (s1_contents>=0)

begin
if(target_address[63]==1)
begin
target_address=0-target_address;
target_address=target_address/4;
PC=PC-target_address;
end
else

begin
target_address=target_address/4;
PC=PC+target_address;
end

end
else PC=PC+1;

end
`BGTZ:

begin
if (s1_contents>0)

begin
if(target_address[63]==1)
begin
target_address=0-target_address;
target_address=target_address/4;
PC=PC-target_address;
end
else

begin
target_address=target_address/4;
PC=PC+target_address;
end

end
else PC=PC+1;

end
`BLEZ:

begin
if (s1_contents<=0)

begin
if(target_address[63]==1)
begin
target_address=0-target_address;
target_address=target_address/4;
PC=PC-target_address;
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end
else

begin
target_address=target_address/4;
PC=PC+target_address;
end

end
else PC=PC+1;

end
`BLTZ,`BLTZAL:

begin
if (s1_contents<0)

begin
if(target_address [63]==1)
begin
target_address=0-target_address;
target_address=target_address/4;
PC=PC-target_address;
end
else

begin
target_address=target_address/4;
PC=PC+target_address;
end

end
else PC=PC+1;

end
`BNE:

begin
if (s1_contents!=s2_contents)

begin
if(target_address[63]==1)
begin
target_address=0-target_address;
target_address=target_address/4;
PC=PC-target_address;
end
else

begin
target_address=target_address/4;
PC=PC+target_address;
end

end
else PC=PC+1;

end
`J: PC=target_address/4;
`JAL: begin

$display("***** Executing JAL *****\n");
FX_GPR[31]=PC+1;
PC=target_address/4;
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end
`JR,`JALR: begin PC=s1_contents;

$display("***** Executing JR *****\n"); end
endcase
cpu_state =`fetch;

end
endtask

/* If the request is not pending already, then check if the effective address is present
in the cache, else make a read request to the external agent to bring the data in. After
the data is brought in, if the request is a load request, read it, else if it is a store then
store it in the cache and also write it back to the external agent. */

task exe_mem_inst;

begin
$display("-------------------COMPLETING LD/STINST----------------\n");

if(send_cmd)begin
req_valid_out=0; send_cmd=0; end

if (rd_pending) begin
$display("!!!!!!Waiting for the system controller to return data...\n");

send_cmd=1;
end

if (rd_pending=0)
begin

//$display("data_valid=%x,data_tag=%x\n",data_valid[eff_address[12:0]],data_tag[eff_addres
s[12:0]]);

if (~data_valid[eff_address[12:0]] II
(data_tag[eff_address[12:0]] != eff_address[50:0]))
begin

$display("!!!!Data not valid in the cache... Getting it from the main
memory...\n");

if (ext_ready) begin
cmd = 1;
cmdP=0;
rd_pending= 1;
req_valid_out=1;
end

end
else begin line_valid=1; end
end

else if(rd_pending && rd_data_done) begin
$display("!!!!!!Received data from the system controller....\n");

rd_pending = 0;
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rd_data_done = 0;
line_valid=1;
data_cache[eff_address[12:0]] = rd_data[7:0];
data_valid[eff_address[12:0]] = 1;
data_tag[eff_address[12:0]] = eff_address[63:13];
data_cache[eff_address[12:0]+l] = rd_data[15:8];
data_valid[eff_address[12:0]+l] = 1;
data_tag[eff_address[12:0]+l] = eff_address[63:13];
data_cache[eff_address[12:0]+2] = rd_data[23:16];
data_valid[eff_address[12:0]+2] = 1;
data_tag[eff_address[12:0]+2] = eff_address[63:13];
data_cache[eff_address[12:0]+3] = rd_data[31:24];
data_valid[eff_address[12:0]+3] = 1;
data_tag[eff_address[12:0]+3] = eff_address[63:13];
data_cache[eff_address[12:0]+4] = rd_data[39:32];
data_valid[eff_address[12:0]+4] = 1;
data_tag[eff_address[12:0]44] = eff_address[63:13];
data_cache[eff_address[12:0]+5] = rd_data[47:40];
data_valid[eff_address[12:0]+5] = 1;
data_tag[eff_address[12:0]+5] = eff_address[63:13];
data_cache[eff_address[12:0]+6] = rd_data[55:48];
data_validteff_address[12:0]+6] = 1;
data_tag[eff_address[12:0]+6] = eff_address[63:13];
data_cache[eff_address[12:0]+7] = rd_data[63:56];
data_valid[eff_address[12:0]+7] = 1;
data_tag[eff_address[12:0]+7] = eff_address[63:13];

end
if (line_valid) begin

line_valid = 0;
case(opcode)

`LW: begin
result[63:32]=0;
result[31:24]=data_cache[eff_address+3];
result[23:16]=data_cache[eff_address+2];
result[15:8]=data_cache[eff_address+l];
result[7:0]=data_cache[eff_address];
FX_GPR[rd] = result;

end
`LB: begin

result[7:0]=data_cache[eff_address];
result[63:8]={56{result[7]}};

end
`LBU: begin

result[7:0]=data_cache[eff_address];
result[63:8]=0;
FX_GPR[rd] = result;

end
`LH: begin

result[7:0]=data_cache[eff_address+l];
result[15:8]=data_cache[eff_address];
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result[63:16]={48{result[15]}};
FX_GPR[rd] = result;

end
`LHU: begin

result[7:0]=data_cache[eff_address+l];
result[15:8]=data_cache[eff_address];
result[63:16]=0;
FX_GPR[rd] = result;

end
`SW: begin

data_cache[eff_address]=s2_contents[31:24];
data_cache[eff_address+l]=s2_contents[23:16];
data_cache[eff_address+2]=s2_contents[15:8];
data_cache[eff_address+3]=s2_contents[7:0];

end
`SH: begin

data_cache[eff_address]=s2_contents[15:8];
data_cache[eff_address+1]=s2_contents[7:0];

end
`SB: begin

data_cache[eff_address]=s2_contents[7:0];
end

endcase
$display("!!!!!!Completing the request \n");
cpu_state  = ̀ fetch;
PC=PC+1;

end
end
endtask

task print;
integer i;
begin

$display ("!!!!!!inst =  %x ---HALT----\n",inst_cache[PC]);
$display ("**REGISTER CONTENTS AFTER THE EXECUTION OF THE

PROGRAM \"test.mem\"**\n");
$display

(" \n");
for (i=0;i<32;i=i44)

begin
$display ("FX_GPR[%0d] = %0d, FX_GPR[%0d] = %0d, FX_GPR[%0d]

= %0d, FX_GPR[%0d] =
%0d\n",i,FX_GPR[i],i+1,FX_GPR[i+1],i+2,FX_GPR[i+2],i+3,FX_GPR[i+3]);

end
$display

(" \n\n");

end
endtask
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endmodule

/*****************************************************************************/

/******************************************************************/
The following is the test program run on the processor module. To run the model save
the following test program on to a file called "test.mem".

34010010 //ori r1, r0, 16 ; r1 =16
00012021 //addu r4, r0, r1 ; r4 = 16
27bd0017 //addiu r29, r29, 23 ; r29 = 23
03ale023 //subu r28, r29, $1 ; r28 = 7
340e0001 //ori r14, r0, 1 ; r14 = 1
340f0002 //ori r15, r0, 2 ; r15 = 2
0101102a //slt r2, r8, r1 ; r2 =1
0c000024 //jal 0x00000024 ; jmp lp: r31= pc+1 = 8;
04000000 //HALT
27b00010 //addiu $16, $29, 16 ; lp: r16= 23+16=39
8fb90008 //lw $25, 8($29) ; r25 = mem[23+8] = 255;
1020000c //beq$l,$0,12
8fb20010 //lw $18, 16($29) ; r18 = mem[23+16] = 255;
03e00008 //jr $31 goto Halt.

/************************************************************************/

VERILOG-XL 2.2.1 Apr 21,1996 12:33:34

Copyright (c) 1994 Cadence Design Systems, Inc. All Rights Reserved.
Unpublished -- rights reserved under the copyright laws of the United States.

Copyright (c) 1994 UNIX Systems Laboratories, Inc. Reproduced with Permission.

THIS SOFTWARE AND ON-LINE DOCUMENTATION CONTAIN CONFIDENTIAL
INFORMATION

AND TRADE SECRETS OF CADENCE DESIGN SYSTEMS, INC. USE,
DISCLOSURE, OR

REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN
PERMISSION OF

CADENCE DESIGN SYSTEMS, INC.
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RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c)(l)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 or
subparagraphs (c)(l) and (2) of Commercial Computer Software -- Restricted
Rights at 48 CFR 52.227-19, as applicable.

Cadence Design Systems, Inc.
555 River Oaks Parkway
San Jose, California 95134

For technical assistance please contact the Cadence Response Center at
1-800-CADENC2 or send email to crc_customers@cadence.com

For more information on Cadence's Verilog-XL product line send email to
talkverilog@cadence.com

Compiling source file "stim.v"
Compiling source file "sys_cntrl.v"
Compiling source file "processor.v"
Highest level modules:
stim

Time=3,SysAD =

zzzzzzzzzzzzzzzz,SysADC=zz,SysCmd=Ozz,ValidIn=1,ValidOut=1,ExtRqst=1,Release=1,RdR
dy=0,WrRdy=0,Reset=1,

CS_req_valid=0,CS_AD=zzzzzzzzzzzzzzzz,CS_ADC=zz,CS_cmd=zzz,
SC_req_valid=0,ext_ready=0

******************FETCH****************************

!!!!!!PC=0,Inst = 34010010

------------------------DECODE------------------------

Time=30,SysAD =

zzzzzzzzzzzzzzzz,SysADC=zz,SysCmd=0zz,ValidIn=1,ValidOut=1,ExtRqst=1,Release=1,RdR
dy=0,WrRdy=0,Reset=1,

CS_req_valid=0,CS_AD=zzzzzzzzzzzzzzzz,CS_ADC=zz,CS_cmd=zzz,
SC_req_valid=0,ext_ready=1

~~~~~~~~~~~~~~~~~~~~~~~~EXECUTE~~~~~~~~~~~~~~~~~~~~~

********Executing ORI**********

~~~~~~~~~~~~~~~~~~~~~~~~COMPLETE~~~~~~~~~~~~~~~~~~~~
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***********************FETCH****************************

!!!!!!PC=1,Inst = 00012021

------------------------DECODE------------------------

~~~~~~~~~~~~~~~~~~~~~~~~EXECUTE~~~~~~~~~~~~~~~~~~~~

********Executing ADDU**********

~~~~~~~~~~~~~~~~~~~~~~~~COMPLETE~~~~~~~~~~~~~~~~~~~~

***********************FETCH****************************

!!!!!!PC=2,Inst=27bd0017

------------------------DECODE------------------------

~~~~~~~~~~~~~~~~~~~~~~~~EXECUTE~~~~~~~~~~~~~~~~~~~~

********Executing ADDIU**********

~~~~~~~~~~~~~~~~~~~~~~~~COMPLETE~~~~~~~~~~~~~~~~~~~~

***********************FETCH***************************

!!!!!!PC=3,Inst = 03ale023

------------------------DECODE------------------------

~~~~~~~~~~~~~~~~~~~~~~~~EXECUTE~~~~~~~~~~~~~~~~~~~~

********Executing SUBU**********

~~~~~~~~~~~~~~~~~~~~~~~~COMPLETE~~~~~~~~~~~~~~~~~~~~

***********************FETCH****************************

!!!!!!PC=4,Inst = 340e0001

------------------------DECODE------------------------

~~~~~~~~~~~~~~~~~~~~~~~~EXECUTE~~~~~~~~~~~~~~~~~~~~

********Executing QRI**********

~~~~~~~~~~~~~~~~~~~~~~~~COMPLETE~~~~~~~~~~~~~~~~~~~~

***********************FETCH****************************
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!!!!!!PC=5,Inst = 340f0002

------------------------DECODE-------------------------

~~~~~~~~~~~~~~~~~~~~~~~~EXECUTE~~~~~~~~~~~~~~~~~~~~

********Executing ORI**********

~~~~~~~~~~~~~~~~~~~~~~~~COMPLETE~~~~~~~~~~~~~~~~~~~~

***********************FETCH****************************

!!!!!!PC=6,Inst = 0101102a

------------------------DECODE------------------------

********Executing SLT**********

~~~~~~~~~~~~~~~~~~~~~~~~COMPLETE~~~~~~~~~~~~~~~~~~~~

***********************FETCH***************************

!!!!!!PC=7,Inst = Oc000024

------------------------DECODE------------------------

-----------------------BRANCH EXECUTE-------------------

***** Executing JAL *****

***********************FETCH****************************

!!!!!!PC=9,Inst=27b00010

------------------------DECODE--------------------------

~~~~~~~~~~~~~~~~~~~~EXECUTE~~~~~~~~~~~~~~~~~~~~

********Executing ADDIU**********

~~~~~~~~~~~~~~~~~~~~COMPLETE~~~~~~~~~~~~~~~~~~~~

Time=703,SysAD =

zzzzzzzzzzzzzzzz,SysADC=zz,SysCmd=0zz,ValidIn=1,ValidOut=1,ExtRqst=0,Release=1,RdR
dy=1,WrRdy=1,Reset=1,

CS_req_valid=0,CS_AD=zzzzzzzzzzzzzzzz,CS_ADC=zz,CS_cmd=zzz,
SC_req_valid=0,ext_ready=1
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***********************FETCH**************************

!!!!!!PC=10,Inst = 8fb90008

Time=710,SysAD =

zzzzzzzzzzzzzzzz,SysADC=zz,SysCmd=0zz,ValidIn=1,ValidOut=1,ExtRqst=0,Release=0,RdR
dy=1,WrRdy=1,Reset=1,

CS_req_valid=0,CS_AD=zzzzzzzzzzzzzzzz,CS_ADC=zz,CS_cmd=zzz,
SC_req_valid=0,ext_ready=0

!!! SYS_CNTRL: External agent asserted request

Time=730,SysAD =

zzzzzzzzzzzzzzzz,SysADC=zz,SysCmd=0zz,ValidIn=1,ValidOut=1,ExtRqst=1,Release=0,RdR
dy=1,WrRdy=1,Reset=1,

CS_req_valid=0,CS_AD=zzzzzzzzzzzzzzzz,CS_ADC=zz,CS_cmd=zzz,
SC_req_valid=0,ext_ready=0

!!! SYS_CNTRL: External agent asserted request

~~~~~~~~~~~~~~~~~~~~~~~~EXECUTE~~~~~~~~~~~~~~~~~~~~

Time=750,SysAD =

0000000000000000,SysADC=zz,SysCmd=002,ValidIn=0,ValidOut=1,ExtRqst=1,Release=l,
RdRdy=1,WrRdy=1,Reset=1,

CS_req_valid=0,CS_AD=0000000000000000,CS_ADC=zz,CS_cmd=002,
SC_req_valid=1,ext_ready=0

!!! SYS_CNTRL: External agent sending wr address

!!!!Data not valid in the cache... Getting it from the main memory...

Time=770,SysAD =

zzzzzzzzzzzzzzzz,SysADC=zz,SysCmd=0zz,ValidIn=1,ValidOut=1,ExtRqst=1,Release=1,RdR
dy=0,WrRdy=0,Reset=1,

CS_req_valid=0,CS_AD=zzzzzzzzzzzzzzzz,CS_ADC=zz,CS_cmd=0zz,
SC_req_valid=1,ext_ready=0

!!! SYS_CNTRL: External agent sending wr data
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!!!!Data not valid in the cache... Getting it from the main memory...

Time=790,SysAD =

zzzzzzzzzzzzzzzz,SysADC=zz,SysCmd=0zz,ValidIn=1,ValidOut=1,ExtRqst=1,Release=1,RdR
dy=0,WrRdy=0,Reset=1,

CS_req_valid=0,CS_AD=zzzzzzzzzzzzzzzz,CS_ADC=zz,CS_cmd=zzz,
SC_req_valid=0,ext_ready=1

!!!!Data not valid in the cache... Getting it from the main memory...

Time=810,SysAD =

zzzzzzzzzzzzzzzz,SysADC=zz,SysCmd=0zz,ValidIn=1,ValidOut=1,ExtRqst=1,Release=1,RdR
dy=0,WrRdy=0,Reset=1,

CS_req_valid=l,CS_AD=000000000000001f,CS_ADC=00,CS_cmd=001,
SC_req_valid=0,ext_ready=1

!!!!!!Waiting for the system controller to return data....

Time=830,SysAD =

000000000000001f,SysADC=00,SysCmd=001,ValidIn=1,ValidOut=0,ExtRqst=1,Release=0,
RdRdy=0,WrRdy=0,Reset=1,

CS_req_valid=1,CS_AD=000000000000001f,CS_ADC=00,CS_cmd=001,
SC_req_valid=0,ext_ready=1

!!! SYS_CNTRL: Sending rd address

!!!!!!Waiting for the system controller to return data....

Time=850,SysAD =

zzzzzzzzzzzzzzzz,SysADC=zz,SysCmd=0zz,ValidIn=1,ValidOut=1,ExtRqst=1,Release=1,RdR
dy=0,WrRdy=0,Reset=1,

CS_req_valid=0,CS_AD=zzzzzzzzzzzzzzzz,CS_ADC=zz,CS_cmd=zzz,
SC_req_valid=0,ext_ready=1

!!! SYS_CNTRL: Waiting for data from external interface

!!! SYS_CNTRL: External interface returning data
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!!!!!!Waiting for the system controller to return data....

Time=870,SysAD =

00000000000000ff,SysADC=zz,SysCmd=101,ValidIn=0,ValidOut=1,ExtRqst=1,Release=1,R
dRdy=0,WrRdy=0,Reset=1,

CS_req_valid=0,CS_AD=00000000000000ff,CS_ADC=zz,CS_cmd=101,
SC_req_valid=1,ext_ready=1

!!! SYS_CNTRL: External interface going back to idle after rdresponse

!!!!!!Waiting for the system controller to return data....

!!!!!!Received data from the system controller....

!!!!!!Completing the request

Time=890,SysAD =

zzzzzzzzzzzzzzzz,SysADC=zz,SysCmd=0zz,ValidIn=1,ValidOut=1,ExtRqst=1,Release=1,RdR
dy=0,WrRdy=0,Reset=1,

CS_req_valid=0,CS_AD=zzzzzzzzzzzzzzzz,CS_ADC=zz,CS_cmd=zzz,
SC_req_valid=0,ext_ready=1

**********************FETCH****************************

!!!!!!PC=11,Inst = 1020000c

***** Executing BEQ *****

*********************FETCH****************************

!!!!!!PC=12,Inst=8fb20010

~~~~~~~~~~~~~~~~~~~~~~~~EXECUTE~~~~~~~~~~~~~~~~~~~~

!!!!Data not valid in the cache... Getting it from the main memory...

Time=1030,SysAD =

212 Chapter 11

--------------------COMPLETING  LD/ST INST------------------

------------------------DECODE---------------------------

-----------------------BRANCH EXECUTE-----------------------

------------------------DECODE---------------------------

--------------------COMPLETING  LD/ST INST------------------



SYSTEM EXAMPLES

zzzzzzzzzzzzzzzz,SysADC=zz,SysCmd=0zz,ValidIn=1,ValidOut=1,ExtRqst=1,Release=1,RdR
dy=0,WrRdy=0,Reset=1,

CS_req_valid=1,CS_AD=0000000000000027,CS_ADC=00,CS_cmd=001,
SC_req_valid=0,ext_ready=1

!!!!!!Waiting for the system controller to return data....

Time=1050,SysAD =

0000000000000027,SysADC=00,SysCmd=001,ValidIn=1,ValidOut=0,ExtRqst=1,Release=0,
RdRdy=0,WrRdy=0,Reset=1,

CS_req_valid=1,CS_AD=0000000000000027,CS_ADC=00,CS_cmd=001,
SC_req_valid=0,ext_ready=1

!!! SYS_CNTRL: Sending rd address

!!!!!!Waiting for the system controller to return data....

Time=1070,SysAD =

zzzzzzzzzzzzzzzz,SysADC=zz,SysCmd=0zz,ValidIn=1,ValidOut=1,ExtRqst=1,Release=1,RdR
dy=0,WrRdy=0,Reset=1,

CS_req_valid=0,CS_AD=zzzzzzzzzzzzzzzz,CS_ADC=zz,CS_cmd=zzz,
SC_req_valid=0,ext_ready=l

!!! SYS_CNTRL: Waiting for data from external interface

!!! SYS_CNTRL: External interface returning data

!!!!!!Waiting for the system controller to return data....

Time=1090,SysAD =

00000000000000ff,SysADC=zz,SysCmd=101,ValidIn=0,ValidOut=1,ExtRqst=1,Release=1,R
dRdy=0,WrRdy=0,Reset=1,

CS_req_valid=0,CS_AD=00000000000000ff,CS_ADC=zz,CS_cmd=101,
SC_req_valid=l,ext_ready=l

!!! SYS_CNTRL: External interface going back to idle after rdresponse

!!!!!!Waiting for the system controller to return data....
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!!!!!!Received data from the system controller....

!!!!!!Completing the request

Time=1110,SysAD =

zzzzzzzzzzzzzzzz,SysADC=zz,SysCmd=0zz,ValidIn=1,ValidOut=1,ExtRqst=1,Release=1,RdR
dy=0,WrRdy=0,Reset=1,

CS_req_valid=0,CS_AD=zzzzzzzzzzzzzzzz,CS_ADC=zz,CS_cmd=zzz,
SC_req_valid=0,ext_ready=l

*********************FETCH****************************

!!!!!!PC=13,Inst = 03e00008

***** Executing JR *****

***********************FETCH****************************

!!!!!!PC=8,Inst = 04000000

------------------------DECODE------------------------

!!!!!!inst = 04000000 ---HALT----

**REGISTER CONTENTS AFTER THE EXECUTION OF THE PROGRAM
"test.mem"**

FX_GPR[0] = 0, FX_GPR[1] = 16, FX_GPR[2] = 1, FX_GPR[3] = 0

FX_GPR[4] = 16, FX_GPR[5] = 0, FX_GPR[6] = 0, FX_GPR[7] = 0

FX_GPR[8] = 0, FX_GPR[9] = 0, FX_GPR[10] = 0, FX_GPR[11] = 0

FX_GPR[12] = 0, FX_GPR[13] = 0, FX_GPR[14] = 1, FX_GPR[15] = 2

FX_GPR[16] = 39, FX_GPR[17] = 0, FX_GPR[18] = 255, FX_GPR[19] = 0

FX_GPR[20] = 0, FX_GPR[21] = 0, FX_GPR[22] = 0, FX_GPR[23] = 0

FX_GPR[24] = 0, FX_GPR[25] = 255, FX_GPR[26] = 0, FX_GPR[27] = 0

FX_GPR[28] = 7, FX_GPR[29] = 23, FX_GPR[30] = 0, FX_GPR[31] = 8
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L227 "processor.v": $finish at simulation time 1210
12172 simulation events + 5 accelerated events
CPU time: 0.3 secs to compile + 0.2 secs to link + 0.1 secs in simulation
End of VERILOG-XL 2.2.1 Apr 21,1996 12:33:34

***************************************************************************/

Example 11-2. R4200 microprocessor with instructions, bus-cycles, and
registers – behavioral model.

11.4 Example 3: Cache Design

11.4.1 Cache System: Architecture with State Diagram

The following page describes a cache design with an architectural state diagram.
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11.4.2 Cache System: Behavioral Model with Write-Through Policy

// Digital Design with Verilog HDL - Summer 1996 - cache controller model with write-
through policy

// 2 K Cache

`define CACHE_SIZE 2*1024
// This is limited by maximum size in this simulator
`define MEM_SIZE 128*1024

`define ADDR_SIZE 17
`define TAG_SIZE 6
//define states
`define IDLE 0
`define READ 1
`define WRITE 2
`define READ_MISS 3



`define READ_CACHE 4
`define WRITE_MISS 5
`define WRITE_CACHE 6

`define DATA_SIZE 64
`define CP 100
`define CACHE_DRV 1
`define NONCACHE_DRV 0

module cache(reset, addr, data, read, write, clock,
buscntrl, done);

input [`ADDR_SIZE-1:0] addr;
inout [`DATA_SIZE-1:0] data;
input read, write, clock, reset;
input buscntrl;
output done; // indicates completion of cache operation

reg [`TAG_SIZE-1:0] tagCache[`CACHE_SIZE-1:0];
reg [`ADDR_SIZE-`TAG_SIZE-1:0] dataCache[`CACHE_SIZE-1:0];
reg [`CACHE_SIZE-1:0] validCache;

reg match;
reg [7:0] state;
integer i;
integer index, tag;

reg [`DATA_SIZE-1:0] MainMemory[0:`MEM_SIZE-l];
reg [`DATA_SIZE-1:0] dataOut;

reg done;

assign data = (buscntrl= = `CACHE_DRV) ? dataOut: 'bz;

function get_caching_scheme;
input [`ADDR_SIZE-1:0] addr;
begin

get_caching_scheme = 1;
end
endfunction

/* Write-Through Algorithm:
Read Operation:

Divide address bits into tag bits and index bits.
Match the address in tagCache[index] with tag.
If matched,

read from Cache;
Else

read from memory and if not read-miss then
copy that into cache.

Write Operation:
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Always write into main memory.
If a cacheable address then also write into cache.
Update tag and data cache as well as valid indicators.

*/

initial
for (i=0; i <`CACHE_SIZE; i=i+1)

validCache[i] = 0;

always @ (read or write)
begin
done = 0;

if (read)
state = ̀ READ;

else
if (write)

state = ̀ WRITE;

while (state != ̀ IDLE)
begin

@ (posedge clock)
if (reset)
begin

// Clear all validCache bits
for (i=0; i <`CACHE_SIZE; i=i+1)

validCache[index] = 0;
end
else
begin

index = addr[`ADDR_SIZE-`TAG_SIZE-1:0];
tag = addr[`ADDR_SIZE-1 : `ADDR_SIZE-`TAG_SIZE];
if ((validCache[index]) &&(tagCache[index] = = tag))

match = 1;
else

match = 0;

case(state)

`READ:
begin
// Match Found in cache

if (match)
dataOut = dataCache[index];

else
//a few possibilities here
// read data from memory and also

// copy in cache or not copy in cache; determining
// this is part of another policy; obtain this info
// from another task; LRU algotihm means bring this in
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// OK
if (get_caching_scheme(addr) == 0)

state = `READ_MISS;
else

state = `READ_CACHE;
end

`READ_MISS :
begin

dataOut = MainMemory[addr];
done = 1;
state = `IDLE;

end

`READ_CACHE:
begin

dataOut = MainMemory[addr];
dataCache[index] = data;
tagCache[index] = tag;
validCache[index] = 1;
state = `IDLE;

end

`WRITE:
begin

if (get_caching_scheme(addr) = = 0)
state = `WRITE_MISS;

else
state = `WRITE_CACHE;

end

`WR1TE_MISS:
begin

MainMemory[addr] = data;
if (match)
// Do not maintain this location in cache any more
validCache[index] = 0;
state = `IDLE;

end

`WRITE_CACHE:
begin

MainMemory[addr] = data;
validCache[index] = 1;
dataCache[index] = data;
tagCache[index] = tag;
state = `IDLE;

end

endcase
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end
end

end

// TEST PORTION OF THE MODULE
initial
begin

$readmemh("cache_t.dat",MainMemory);

end

endmodule

`define NEW 1

`ifdef NEW

module text;

reg reset, clock, read, write;
reg [`ADDR_SIZE-1:0] addr;
reg buscntrl;
reg [`DATA_SIZE-1:0] data_reg;
wire [`DATA_SIZE-1:0] data;

cache c(reset, addr, data, read, write, clock, buscntrl, done);

assign data = (buscntrl = = `CACHE_DRV) ? 'bz : data_reg;

always #50 clock = ~clock;

initial clock = 0;

initial
begin

// $dumpfile("cache.dmp");
$monitor($time,,clock,, reset,, read,, write,, data, addr,, c.state,,

c.match);

#(`CP+1)
reset = 1;

#`CP
reset = 0;

#(5*`CP)
addr = 2;
read = 1;
buscntrl = `CACHE_DRV;

#(5*`CP)
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addr = 4;
read = 0;
write = 1;
data_reg = 1000;

buscntrl = ̀ NONCACHE_DRV;
#(5*`CP)

addr = 2;
read = 1;
write = 0;
buscntrl = ̀ CACHE_DRV;

#(10*`CP)
$finish;

end

endmodule
`endif

Example 11-3. A cache system with a write-through policy; behavioral
abstraction.

11.4.3 Cache System: Behavioral Model Modified for
Write-Back Policy
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11.4.3.1 State Diagram

11.4.3.2 Verilog Source for the Cache Controller with Write-Back Policy

// Digital Design with Verilog HDL - Summer 1996 - cache controller model with write-back
policy

`define TAG_SIZE 6
// 256 K Cache

`define CACHE_SIZE 2*1024
`define ADDR_SIZE 17
`define IDLE 0
`defineREAD 1
`define WRITE 2
`define READ_MISS 3
`define READ_CACHE 4
`define WRITE_MISS 5
`define WRITE_CACHE 6
`define READ_WRITE_DIRTY 7
`define WRITE_WRITE_DIRTY 8

`define DATA_SIZE 64



// This is limited by maximum size in this simulator
`define MEM_SIZE 128*1024

`define CP 100
`define CACHE_DRV 1
`define NONCACHE_DRV 0

module cache(reset, addr, data, read, write, clock, buscntrl, done);
input [`ADDR_SIZE-1:0] addr;
inout [`DATA_SIZE-1:0] data;
input read, write, clock, reset;
input buscntrl;
output done; // indicates completion of cache operation

reg [`TAG_SIZE-1:0] tagCache[`CACHE_SIZE-1:0];
reg [`ADDR_SIZE-`TAG_SIZE-1:0] dataCache[`CACHE_SIZE-1:0];
reg [`CACHE_SIZE-1:0] validCache;

reg [`CACHE_SIZE-1:0] dirtyCache;

reg [̀ ADDR_SIZE-1:0] wb_addr;

reg match;
reg [7:0] state;
integer i;

integer index, tag;

reg [`DATA_SIZE-1:0] MainMemory[0:`MEM_SIZE-1];
reg [`DATA_SIZE-1:0] dataReg;

reg done;
integer f;
initial
f = $fopen("state.out");

assign data = (buscntrl= = `CACHE_DRV) ? dataReg : 'bz;

function get_caching_scheme;
input [`ADDR_SIZE-1:0] addr;
begin

get_caching_scheme = 1;
end

endfunction

task print_state;
input [7:0] state;

case(state)
`IDLE:

$fdisplay(f, "STATE=IDLE");
`READ: $fdisplay(f,"STATE=READ");
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`WRITE: $fdisplay(f, "STATE=WRITE");
`READ_MISS: $fdisplay(f, "STATE=READ_MISS");
`READ_CACHE: $fdisplay(f, "STATE=READ_CACHE");
`WRITE_MISS: $fdisplay(f, "STATE=WRITE_MISS");
`WRITE_CACHE: $fdisplay(f, "STATE=WRITE_CACHE");
`READ_WRITE_DIRTY: $fdisplay(f, "STATE=READ_WRITE_DIRTY");
`WRITE_WRITE_DIRTY: $fdisplay(f, "STATE=WRITE_WRITE_DIRTY");

endcase
endtask

/* Write-Back Algorithm:
Read Operation :

Divide address bits into tag bits and index bits.
Match the address in tagCache[index] with tag.
If matched,

read from Cache;
Else

read from memory and if not read-miss then
copy that into cache.

Write Operation:
Divide address bits into tag bits and index bits.
If dirty bit is on for this index, write the original
data back to memory. Update the cache with the new
data. */

always @(read or write)
begin
done = 0;

if (read)
state = `READ;

else
if (write)

state = `WRITE;

while (state != `IDLE)
begin

@(posedge clock)
if (reset)
begin

// Clear all validCache bits
for (i=0; i <`CACHE_SIZE; i=i+1)
begin

validCache[index] = 0;
dirtyCache[i] = 0;

end
end
else
begin

index = addr[`ADDR_SIZE-`TAG_SIZE-1:0];
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tag = addr[`ADDR_SIZE-1: `ADDRSIZE-`TAG_SIZE];
if ((validCache[index]) &&(tagCache[index] = = tag))

match = 1;
else

match = 0;
print_state(state);

case(state)

`READ:
begin
// Match Found in cache

if (match)
begin

dataReg = dataCache[index];
done= 1;
state = ̀ IDLE;

end
else

//a few possibilities here
// read data from memory and also

// copy in cache or not copy in cache; determining
// this is part of another policy; obtain this info
// from another task; LRU algotihm means bring this in
// OK

if (get_caching_scheme(addr) = = 0)
state = ̀ READ_MISS;

else
begin

if (dirtyCache[index])
state = `READ_WRITE_DIRTY;

else
state = `READ_CACHE;

end
end

`READ_MISS:
begin

dataReg = MainMemory[addr];
done = 1;
state = `IDLE;

end

`READ_CACHE:
begin

dataReg = MainMemory[addr];
dataCache[index] = dataReg;
tagCache[index] = tag;
validCache[index] = 1;
state = `IDLE;

end
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`WRITE:
begin

if (get_caching_scheme(addr) = = 0)
state = `WRITE_MISS;

else
if (dirtyCache[index])

state = `WRITE_WRITE_DIRTY;
else
begin

state = `WRITE_CACHE;
end

end

`WRITE_MISS:
begin

MainMemory[addr] = data;
if (match)
// Do not maintain this location in cache any more
validCache[index] = 0;
state = ̀ IDLE;

end

`WRITE_CACHE:
begin

// MainMemory[addr] = data;
// In the writeback scheme, we do not update memory until a location
// in cache is being rewritten.

dirtyCache[index] = 1;
validCache[index] = 1;
dataCache[index] = data;
tagCache[index] = tag;

done = 1;
state = `IDLE;

end

`READ_WRITE_DIRTY :
begin

wb_addr = {tag, tagCache[index]};
MainMemory[wb_addr] = dataCache[index];
dirtyCache[index] = 0;
state = `READ_CACHE;

end

`WRITE_WRITE_DIRTY :
begin

wb_addr = {tag, tagCache[index]};
MainMemory[wb_addr] = dataCache[index];



state = ̀ WRITE_CACHE;
end

endcase
end
end

end

// TEST PORTION OF THE MODULE
initial
begin

$readmemh("cache_t.dat",MainMemory);

end

endmodule

`define NEW 1

`ifdef NEW

module test;

reg reset, clock, read, write;
reg [`ADDR_SIZE-1:0] addr;
reg buscntrl;
reg [`DATA_SIZE-1:0] data_reg;
wire [`DATA_SIZE-1:0] data;

integer i;
integer f;

cache c(reset, addr, data, read, write, clock, buscntrl, done);

assign data = (buscntrl = = `CACHE_DRV) ? 'bz : data_reg;

always #50 clock = ~clock;

initial clock = 0;

initial
begin

f = $fopen("fmon.out");
// $dumpfile("cache.dmp");
$fmonitor(f,$time,,clock,, reset,, read,, write,, data, addr,, c.state,,

c.match);

#(`CP+1)
reset = 1;

#`CP
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reset = 0;

#(5*`CP)
addr = 2;
read = 1;
buscntrl = `CACHE_DRV;

#(5*`CP)
addr = 4;
read = 0;
write = 1;
data_reg = 1000;
buscntrl = `NONCACHE_DRV;

#(5*`CP)
write = 0;
#1
write = 1;
addr = 4;
read = 0;
write = 1;
buscntrl = `NONCACHE_DRV;
data_reg = 1010;

#(10*`CP)
for (i=0; i< 500; i=i+1)
begin

#(5*`CP)
addr = $random;
read = $random;
write = ~read;
buscntrl = (read) ? `CACHE_DRV : `NONCACHE_DRV;
if (write)

data_reg = $random;
end
$finish;

end

endmodule
`endif

Example 11-4. Cache system with a write-back policy: behavioral model –
refinement of Example 11-3.
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11.4.4 Cache System: Implementation: Write-Through Policy

11.4.4.1 Block Diagram



11.4.4.2 Verilog Source

`define TAG_SIZE 6
// 256 K Cache

`define CACHE_SIZE 2*1024
`define ADDR_SIZE 17
`define IDLE 0
`define READ 1
`define WRITE 2
`define READ_MISS 3
`define READ_CACHE 4
`defineWRITE_MISS 5
`define WRITE_CACHE 6
`define READ_WRITE_DIRTY 7
`define WRITE_WRITE_DIRTY 8

`defineREAD_MISS1 9
`define READ_MISS2 10
`defineWRITE_MEM 11

`define DATA_SIZE 64

// This is limited by maximum size in this simulator
`define MEM_SIZE 128*1024

`define CP 100
`defineCACHE_DRV 1
`define NONCACHE_DRV 0
`define FULL 1

`ifdef FULL
module Processor(procRead, procWrite, procAddress, procData, procClock, reset);

output procRead, procWrite;
inout [`ADDR_SIZE-1:0]procAddress;
inout [`DATA_SIZE-1:0] procData;
input procClock;
input reset;

endmodule

module MainMemory(memRead, memWrite, memAddress, memData, memClock,reset);
input memRead, memWrite, memClock, reset;
input [`ADDR_SIZE-1:0] memAddress;
input [`DATA_SIZE-1:0] memData;

endmodule
`endif

module Cache(procRead, procWrite, procAddress, procData,
memRead, memWrite, memAddress, memData, reset, clock);

input procRead, procWrite, reset, clock;
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input [`ADDR_SIZE-1:0] procAddress;
outputmemRead, memWrite;
output [`ADDR_SIZE-1:0] memAddress;
inout [`DATA_SIZE-1:0] memData, procData;

wire [`DATA_SIZE-1:0] dataIn, outData, dataOut;
wire [`TAG_SIZE-1:0] tagOut;

tagCache tc(procAddress, tagOut, clock, write, procRead, reset);
validCache vc(procAddress, valid, clock, write, procRead, reset);
dataCache dc(procAddress, dataIn, dataOut, clock, write, read);
comparator c(tagOut, procAddress[`ADDR_SIZE-1:`ADDR_SIZE-`TAG_SIZE], match);
cacheControl cc(procRead, procWrite, match, valid, read, write, memWrite,

memRead, dataOutSel, dataInSel, clock, reset);
dataMux dmIn(procData, memData, dataInSel, dataIn);
dataMux dmOut(dataOut, memData, dataOutSel, outData);

endmodule

module System();

wire [`ADDR_SIZE-1:0] memAddress;
wire [`DATA_SIZE-1:0] memData;
wire [`ADDR_SIZE-1:0] procAddress;
wire [`DATA_SIZE-1:0] procData;
Processor p(procRead, procWrite, procAddress, procData, procClock,

reset);
MainMemory m(memRead, memWrite, memAddress, memData, memClock,

reset);
Cache c(procRead, procWrite, procAddress, procData,

memRead, memWrite, memAddress, memData, reset, clock);

endmodule

/**** Modules within cache */
/* In the previous level of abstraction, most of these were abstracted to memories. The
reading and writing to these memories or registers was modeled at a higher level without the
structural details. In this, we refine these to more detail where functional units are organized
in the level of detail that has internal units and synchronization between these is also
implemented.
*/
/* Assume that read or write is a pulse asserted for clock cycle when
that operation begins */

module tagCache(address, tagOut, clock, write, read, reset);

input [`ADDR_SIZE-1:0] address;
input clock, write, read, reset;
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output [`TAG_SIZE-1:0] tagOut;

reg [`TAG_SIZE-1:0] tagOut;
reg [`TAG_SIZE-1:0] tagCacheMem[`CACHE_SIZE-1:0];

always @write
if (write)

@(negedge clock)
tagCacheMem[address[`ADDR_SIZE-TAG_SIZE-

1:0]] = address[`ADDR_SLZE-1 : `ADDR_SIZE-`TAG_SIZE];

always  @read
if (read)

@(posedge clock)
tagOut = tagCacheMem[address[`ADDR_SIZE-`TAG_SIZE-1:0]];

endmodule

module validCache(address, validOut, clock, write, read, reset);
input [`ADDR_SIZE-1:0] address;
input clock, write, read, reset;
output validOut;
reg validOut;
reg [`CACHE_SIZE-1:0] validCacheMem;

always @reset
if (reset)
validCacheMem  = ̀CACHE_SIZE'bO;

always@write
@(negedge clock)

if(!reset)
validCacheMem[address[`ADDR_SIZE-`TAG_SIZE-1:0]]=1;

always @read
@(posedge clock)

validOut = validCacheMem[address[`ADDR_SIZE-`TAG_SIZE-1:0]];

endmodule

module dataCache(address, dataIn, dataOut, clock, write, read);
input [`ADDR_SIZE-1:0] address;
input clock, write, read;
output [`DATA_SIZE-1:0] dataOut;

reg [`DATA_SIZE-1:0] dataOut;
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input [`DATA_SIZE-1:0] dataIn;

reg [`DATA_SIZE-1:0] dataCache[`CACHE_SIZE-1:0];

always @write
if (write)
@(posedge clock)

dataCache[address[`ADDR_SIZE-`TAG_SIZE-1:0]]=dataIn;

always @read
if (read)

@(posedge clock)
dataOut = dataCache[address[`ADDR_SIZE-`TAG_SIZE-1:0]];

endmodule

module comparator(in1, in2, match);
input [̀ TAG_SIZE-1:0] in1, in2;
output match;

assign match = (in1 == in2);
endmodule

module cacheControl(procRead, procWrite, match, valid, read, write, memWrite,
memRead,dataOutSel, dataInSel, clock, reset);

input procRead, procWrite, match, valid, clock, reset;
output memWrite, memRead,dataOutSel, dataInSel, read, write;
reg memWrite, memRead,dataOutSel, dataInSel, read, write;
reg [7:0] state, nextState;

always @(posedge clock)
state = reset ? `IDLE : nextState;

always @(state or procWrite or procWrite or match or valid)
case(state)

`IDLE : if (procRead)
nextState = `READ;

else if (procWrite)
nextState = `WRITE;

else
nextState = `IDLE;

`READ : if (match && valid)
nextState = `IDLE;

else
nextState = `READ_MISS1;
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`READ_MISS1:/* Read from main memory takes 2 cycles */
nextState = ̀ READ_MISS2;

`READ_MISS2: nextState = `IDLE;

`WRITE: /* Check principles of write-hit from Mips documentation*/
/* Current plan : always save in cache */
/* Outputs here consist of writing to cache */
nextState = `WRITE_MEM;

`WRITE_MEM :
nextState = `IDLE;

endcase

/* Output combinational logic from controller */
/* The signals in the output list are
memRead, memWrite, dataInSel, dataOutSel, read, write
*/
always @state

case (state)

`READ :
begin
read = 1;
dataOutSel = ~(match & valid);

end

`READ_MISS1:
begin
memRead = 1;
dataInSel= 1;
end

`READ_MISS2:
begin
memRead <= #`CP 0;
write = 1;
write <= #`CP 0;
end

`WRITE:
begin
memWrite = 1;
write = 1;
dataInSel = 0;
end
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`WRITE_MEM:
begin
memWrite = 0;
write = 0;
memWrite <= #`CP 0;
dataInSel <= #`CP l;
end

endcase
endmodule

/* This mux will output data onto processor for read */
module dataMux(data0, data1, dataSel, outData);

input [`DATA_SIZE-1:0] data0, data1;
input dataSel;
output [`DATA_SIZE-1:0] outData;
// cache controller must generate a 1 for read_cache and
// 0 for read_miss states for dataSel lines.

assign outData = dataSel ? data0 : data1;

endmodule

Example 11-5. A register transfer level model of the cache system with
write-through policy: with blocks.

11.5 Memory Model with Bus Cycle Timing and with Timing Checks

module ram_example(addr, we_, io, cel_, ce2_, oe_, vcc, vss);
/*
64K x 4 RAM
*/
// DECLARE PORTS
`define mem_size 65536
`define addr_size 16
`define data_size 4

input [(`addr_size-1):0] addr;
inout [(`data_size-1):0] io;
input ce1_, ce2_, we_, oe_;
input vcc, vss;
// Define SIZE Constants

`define asize `addr_size
`define dsize `data_size
`define size `mem_size
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//DEFINE TIMING CONSTANTS
// READ CYCLE
`define tRC 25 // Minimum read cycle time
`define tAA 25 // Minimum address to data valid
`define tOHA 3 // Maximum Output Hold from Address Change
`define tACE 25 //Maximum CE_Bar low to data valid
`define tDOE 15 //Maximum OE_Bar Low to data valid
`define tLZOE 3 // Maximum OE_Bar Low to data valid
`define tHZOE 15 // Maximum CE_Bar Low to Power up
`define tLZCE 5 // Minimum CE_Bar High to High Z
`define tHZCE 10 // Maximum CE_Bar High to High Z
`define tPU 0 //Minimum CE_Bar Low to Power up
`define tPD 25 //Maximum CE_Bar High to Power Down

// WRITE CYCLE
`define tWC 20 // Minimum Write Cycle Time
`define tSCE 20 // Minimum CE_Bar Low to Write End
`define tAW20 // Minimum Address setup to write end
`define tHA 0 // Minimum Address Hold from Write End.
`define tSA 0 // Minimum CE_Bar Low to Power up
`define tPWE 20 // Minimum CE_Bar Low to Power up
`define tSD 13 // Minimum CE_Bar Low to Power up
`define tHD 0 // Minimum CE_Bar Low to Power up
`define tLZWE 3 // Minimum CE_Bar Low to Power up
`define tHZWE 7 // Minimum CE_Bar Low to Power up

wire ce_ = ce1_ && ce2_;

// DECLARE MEMORY, OUTPUT BUFFER
reg [(`data_size-1):0] mem[(`mem_size-1):0];
reg [(`data_size-1):0] out_buf;

//DECLARE IO AS TRI BY BUS_CONTROL FLAG
reg bus_control;
tri [(`data_size-1):0] io = bus_control ? out_buf : 4'bzzzz:

// DECLARE TIME VARIABLES TO HOLD ABSOLUTE TIME OF PREVIOUS EVENT
time addr_t, io_t, ce_0_t, ce_1_t, we_0_t, we_l_t, oe_0_t, curr_t;
time read_cycle_start_time, write_cycle_start_time;
time delay_to_output_x, delay_to_output_valid;

//DECLARE REG TO INDICATE START OF READ CYCLE
reg read_flag;

// DETECT SIGNAL CHANGES
always

@(addr) addr_t = $time;
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always
@(negedge ce_) ce_0_t = $time;

always
@(posedge ce_) ce_l_t = $time;

always
@(negedge oe_) oe_0_t = $time;

always
@(posedge we_) we_0_t = $time;

// **** READ CYCLE MODEL
// DETECT START OF A READ CYCLE
always

@(addr or negedge(ce_) or negedge(oe_) )
begin : read_cycle_start_block
if ((we_== 1) && (ce_ == 0) && (oe_ == 0))

// FLAG READ_CYCLE_1 BLOCK
read_flag = 1;

end

// INITIATE READ CYCLE
always

begin : read_block
wait (read_flag == 1)

read_cycle_start_time = $time;
// DELAY UNTIL OUTPUT IS ACTIVE
find_del_to_op_x;
del_to_op_valid_n_chk_sig_chg;
out_buf = mem[addr];
// WAIT FOR THIS READ CYCLE TO END
fork :read_end_fork

@(addr)
disable read_end_fork;

@(ce_)
begin
#`tHZCE bus_control = 0;
disable read_end_fork;
end

@(oe_)
begin

#`tHZOE bus_control = 0;
disable read_end_fork;

end
@(we_)

begin // No delay specified for we_ to end of read
bus_control = 0;

Chapter 11
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disable read_end_fork;
end

join
// CHECK READ CYCLE TIME
if ( ($time - read_cycle_start_time) < `tRC)
begin

$display("Error : Read cycle time of %d violated at time
%d\n",read_cycle_start_time,$time);

disable read_block;
end

read_flag = 0;
end

// TASKS TO DETERMINE DELAY TIME DURING READ CYCLE
task find_del_to_op_x;
begin

delay_to_output_x = addr_t + `tOHA;
if (delay_to_output_x < (ce_0_t + `tLZCE))

delay_to_output_x = ce_0_t + `tLZCE;
if (delay_to_output_x < (ce_0_t + `tLZOE))

delay_to_output_x = ce_0_t + `tLZOE;
delay_to_output_x = delay_to_output_valid - $time;

end
endtask

task find_delay_to_output_valid;
begin

delay_to_output_valid = addr_t + `tAA;
if (delay_to_output_valid < (ce_0_t + ̀ tACE))

delay_to_output_valid = ce_0_t + `tACE;
if (delay_to_output_valid < (oe_0_t + `tDOE))

delay_to_output_valid = oe_0_t + `tDOE;
delay_to_output_valid = delay_to_output_valid - $time;

end
endtask

task del_to_op_x_n_chk_sig_chg;
begin: del_to_out_x_fork

fork
// DELAY TO OUTPUT X
#delay_to_output_x disable del_to_out_x_fork;
// CHECK FOR CHANGES ON CONTROL SIGNALS
@(ce_) $display("Warning : CE_ changed before read data active");
@(oe_) $display("Warning : OE_ changed before read data active");
@(we_) $display("Warning : WE_ changed before read data active");
// TEST OUT IF, @(ce_), the disable below might affect the display
// ABOVE BY PLACING A BUNCH OF DISPLAYS IN THE @(ce_) CHECK ABOVE
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@(addr)
begin

$display("Warning : Addr changed before read data active");
// read_flag remains 1 so that new read cycle starts
bus_control = 0; // MAY NOT OCCUR IMMEDIATELY
disable read_block;

end

join
end

endtask

task del_to_op_valid_n_chk_sig_chg;
fork : del_to_out_valid_fork

#delay_to_output_valid disable del_to_out_valid_fork;
//check for changes on control signals
@(ce_) $display("Warning : CE_ changed before read data valid");
@(oe_) $display("Warning : OE_ changed before read data valid");
@(we_) $display("Warning : WE_ changed before read data valid");

@(we_) $display("Warning : WE_ changed before read data valid");
@(ce_ or oe_ or we_)

begin
read_flag = 0;
bus_control = 0;
disable read_block;

end
@(addr)
// CHECK FOR EVENT ON ADDRESS BUS

begin
$display("Warning : Addr changed before read data active");
// read_flag remains 1 so that new read cycle starts
bus_control = 0; // MAY NOT REALLY OCCUR IMMEDIATELY
disable read_block;

end
join

endtask

task del_to_out_valid_n_chk_for_sig_chg;
begin: del_to_valid_fork

fork
// DELAY TO OUTPUT X
#delay_to_output_valid disable del_to_valid_fork;
// CHECK FOR CHANGES ON CONTROL SIGNALS
@(ce_) $display("Warning : CE_ changed before read data valid");
@(oe_) $display("Warning : OE_ changed before read data valid");

@(we_) $display("Warning : WE_ changed before read data valid");
@(ce_ or oe_ or we_)
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begin
read_flag = 0;
bus_control = 0; // MAY NOT REALLY OCCUR IMMEDIATELY
disable read_block;

end

join
end

endtask

always
begin : write_block

bus_control = 0;
wait ((we_ == 0) && (ce_ == 0))

write_cycle_start_time = $time;
if ((write_cycle_start_time - addr_t) < `tSA)

begin
$display("Warning : Address Set-Up to Wrote Start time violated at

%d", $time);

time=%d",

time=%d",

time=%d", $time);

disable write_block;
end

fork : write_end_fork
@(ce_or we_)
begin

// CHECK CE_ LOW TO WRITE END
if (($time - ce_0_t) < `tSCE)

$display("Warning : CE_ low to write end time= %d.", $time);
else
if ( ($time - we_0_t) < `tPWE)

$display("Warning : WE_ Pulse Width (`tPWE) time violation at

$time);
else
if (( $time - addr_t) < `tAW)

$display("Warning : Address setup (`tPWE time violation at

$time);
else
if (( $time - io_t) < `tSD)

$display("Warning : Data Setup (`tSD time violation at

else
mem[addr] = io;

$display("the write cycle is being exec., io=%h, addr=%h", io, addr);
disable write_block;

end

@(addr)
begin
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$display("Warning : Address changed before end of write cycle");
disable write_block;

end
@(io)

begin
$display("Warning : Data changed before end of write cycle");
disable write_block;
end

join
end

endmodule

Example 11-6. Detailed model of a cache controller with write-through
policy.

11.6 Exercises

Write a model for write-back policy cache controller similar to the Example 11-5
containing RTL level description and details of synchronization and
combinational logic and state machine controller description. Start with the
behavioral model in Examples 11-4 and the 11-5 to obtain this model.

In the Example 11-1, identify the concurrent processing of reset and instructions
and the usage of disable. How do the other interrupts take place in this model?
Can one use functions to model task execute_instructions? Check the steps in
decoding of instructions for the following instructions—dcr b; dcr m; add b;
add m.

For Example 11-2, add pipelining features for the instruction fetch modeled in the
always loop at the beginning of the processor module. See the speedup in the
processor execution.

1.

2.

3.



12 SYNTHESIS WITH VERILOG

12.1 Logic Synthesis and Behavioral Synthesis

Synthesis converts Verilog HDL models of hardware down to gate-level
implementations automatically and maps these into target technology. Synthesis also
optimizes the design for a given set of constraints related to area and speed. The
synthesis techniques and tools are commonly classified into logic and behavioral
synthesis. These techniques apply to HDL descriptions at the logic level and at the
behavioral level, respectively. Synthesis allows mapping of same HDL description
into multiple target technologies without any change in the design.

12.2 Design Flow with Synthesis

The flow for a typical Verilog based design includes logic synthesis as shown in the
Figure 12-1.

12.2.1 Typical Design Flow with Verilog

The Figure 12-1 illustrates a typical design flow with Verilog. A top-down design
starts with a behavioral description and is finally sent to the fab after complete
placement, layout and final verification as shown in this diagram.

Write a high-level behavioral description of the planned design. This step starts
with concepts and ends up with a high level description in the Verilog language.
This description can have various levels of detail and essentially has
architectural elements and algorithmic elements. This may be used with
behavioral synthesis for some specialized parts but in general will be simulated
for verifying the parameters, algorithms and architecture. Example here includes
the cache controller models for write-through and write-back schemes
(Example 11.3–11.5). Some level of tests are generated at this point.

1.
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2.

3.

4.

5.

Next we perform stepwise refinement to the RTL level. This is again simulated
and verified for functional correctness. We also check for the RTL synthesis
subset during this process. Here we first use the tests developed in step 1 and add
tests for the details added at this level. For example, for a cache controller, all
communicating wires and registers are modeled here as opposed to higher level
models of the blocks in step 1. Thus, correctness of all signals at the (logic)
synthesizable blocks are tested in this step.

Synthesize the HDL description with the synthesizer. In a typical Synthesizer
like Synopsys, this step is divided into two parts—HDL Compilation and the
Design Compilation. Synthesizer performs architectural optimizations, then
creates an internal representation of the design. Use the Synthesis Design
Compiler to produce an optimized gate level description in the target ASIC
library. You can optimize the generated circuits to meet the timing and area
constraints wanted. This optimization step must follow the translation to
produce an efficient design.

The output of a synthesizer is a gate-level Verilog description. This netlist-style
description uses ASIC components as the leaf-level cells of the design. The gate-
level description has the same port and module definitions as the original high-
level Verilog description 1. The gate-level Verilog description from step 3 is
now passed through the Verilog simulator. You can use the original Verilog
simulation drivers from step 1 and 2 because module and port definitions are
preserved through the translation and optimization processes. Compare the
output of the gate-level simulation (step 4) against the output of the original
Verilog description simulation (step 3) to verify that the implementation is
correct.

The synthesis tools can be used at behavioral and at the RTL level. The RTL
level is synthesized using techniques that are commonly known as logic
synthesis. In this book, the major components of this flow will be discussed. The
various representations in Verilog like behavioral, RTL and structural occur at
different places in this design cycle and will be discussed fully. Simulation
aspects will be discussed for each of those and as a whole as well with the
semantic model adding to the depth of this understanding. Synthesis with
Verilog will be discussed in various sections and then in Chapter 12. Timing
descriptions that are especially important for post-layout verification will be
discussed in Chapter 13 on specify blocks,

In the Figure 12-1, we see the design flow within the synthesis. Synthesis has two
aspects—technology independent and technology dependent. This is explained in
Figure 12-2. In the Figure 12-3, we show how behavioral synthesis complements the
logic synthesis. The typical design flow is explained below:
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Synthesis with Verilog Components
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12.3 Logic Synthesis View

Logic synthesis view of design is similar to the traditional view of sequential system
whereby the system is separated into the 'next-state' generation logic, current state
description and output generation logic. The first block diagram shows the
traditional view (also known as Class A or Mealy machine). The second diagram
shows the machine as a Verilog description (Sagdeo machine!). This is the modern
view of the design that is now amenable to logic synthesis. A group of state machine
and combination logic blocks as shown in figure. Each of these blocks is synthesized
using state-machine synthesis and combinational synthesis techniques. Examples of
this class of machines include the cache controller described in section 11.2 and the
traffic light controller in Example 12-3 described below. Examples of pure
combinational logic that is commonly synthesized include the datapath design of
section on RTL descriptions.

Synthesis has two major steps: technology independent and technology dependent.
The mapping is then done into target technologies via libraries supported in
synthesis like asics by LSI Logic, VLSI, etc., and fpgas from XILINX, PLDs from
Altera, etc.

The datapath synthesis will be done using: RTL and gate level descriptions. Some
simple behavioral logic that either models a state machine or a combinational logic
block is supported. State Machine Synthesis will be done from state machine
descriptions via simple behavioral descriptions (1 state machine per module).
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The datapath synthesis will be done using:

RTL and gate level descriptions

Some simple behavioral logic is supported



SYNTHESIS WITH VERILOG 249

State Machine Synthesis will be done from state machine descriptions via simple
behavioral descriptions (1 state machine per module)

12.4 Examples

Adder(Combinational Logic example):

module m(out,in 1,in2);
output [4:0] out;
input [3:0] inl, in2;

assign out = inl + in2;
endmodule

Example 12-1. Synthesizable combinational adder.

In the Example 12-1 above, an adder is described using rtl construct—the
continuous assignment. This will be synthesized into a combinational adder of gates
like the one in Chapter 5.

// Multiplexor(Combinational Logic example):
`define DATA0 0
`define DATA1 1
`define DATA2 2
`define DATA3 3

module mux42(out, data, sel);

input [3:0] data;
input [1:0] sel;
output out;

reg out;

always @(data or sel)
case (sel)

`DATA0 : out = data[0];
`DATA1 : out = data[l];
`DATA2 : out = data[2];
`DATA3 : out = data[3];

endcase
endmodule

Example 12-2. Synthesizable combinational multiplexor.

In the Example 12-2 above, a combinational multiplexer is described using
behavioral modeling with case construct as the key construct.
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// State Machine Example - Traffic light controller

`define GREEN 0
`define YELLOW 1
`define RED 2

module TLC(R, G, Y, clock, reset);
output R, Y, G; // Red, Yellow, Green Signal lines
input clock, reset;
reg next_state;
reg R, Y, G;
always @(posedge clock)
begin

case (next_state)

`GREEN:
begin

next_state = `YELLOW;
G = 1;
R = 0;
end

`YELLOW: begin
next_state = ̀ RED;
Y = 1 ;
G = 0;

end

`RED: begin
next_state = `GREEN;

R = 1;
Y = 0;

end
endcase

end

always @(reset)
next_state = `RED;

endmodule

Example 12-3. Synthesizable sequential design – traffic light controller.

In the Example 12-3 above, a traffic light controller state machine is described.

`define TAG_SIZE 6
// 256 K Cache

`define CACHE_SIZE 2*1024
`define ADDR_SIZE 17
`define IDLE 0
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`define READ 1
`define WRITE 2
`define READ_MISS 3
`define READ_CACHE 4
`define WRITE_MISS 5
`define WRITE_CACHE 6
`define READ_WRITE_DIRTY 7
`define WRITE_WRITE_DIRTY 8

`define READ_MISS1 9
`define READ_MISS2 10
`define WRITE_MEM 11

`define DATA_SIZE 64

// This is limited by maximum size in this simulator
`define MEM_SIZE 128*1024

`define CP 100
`define CACHE_DRV 1
`define NONCACHE_DRV 0

module comparator(in1, in2, match);
input [TAG_SIZE-l:0] in1, in2;
output match;

assign match = (in1 == in2);
endmodule

module cacheControl(procRead, procWrite, match, valid, read, write, memWrite,
memRead,dataOutSel, dataInSel, clock, reset);

input procRead, procWrite, match, valid, clock, reset;
output memWrite, memRead,dataOutSel, dataInSel, read, write;
reg memWrite, memRead,dataOutSel, dataInSel, read, write;
reg [7:0] state, nextState;

always @(posedge clock)
state = reset ? `IDLE : nextState;

always @(state or procWrite or procWrite or match or valid)
case(state)

`IDLE: if (procRead)
nextState = ̀ READ;

else if (procWrite)
nextState = `WRITE;

else
nextState = ̀ IDLE;

`READ : if (match && valid)
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nextState = `IDLE;
else

nextState = `READ_MISS1;
`READ_MISS1:/* Read from main memory takes 2 cycles */

nextState = `READ_MISS2;

`READ_MISS2: nextState = `IDLE;

` WRITE: /* Check principles of write-hit from Mips documentation*/
/* Current plan : always save in cache */
/* Outputs here consist of writing to cache */
nextState = `WRITE_MEM;

`WRITE_MEM:
nextState = `IDLE;

endcase

/* Output combinational logic from controller */
/* The signals in the output list are
memRead, memWrite, dataInSel, dataOutSel, read, write
*/
always @(state)

case (state)

`READ:
begin
read = 1;
dataOutSel = ~(match & valid);
end

`READ_MISS1:
begin
memRead = 1;
dataInSel= 1;
end

`READ_MISS2:
begin
memRead = #1 0;
write = 1;
write = #1 0;
end

`WRITE:
begin
memWrite = 1;
write = 1;
dataInSel = 0;
end
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`WRITE_MEM:
begin
memWrite = 0;
write = 0;
memWrite = #1 0;
dataInSel = #l 1;
end

endcase
endmodule

/* This mux will output data onto processor for read */
module dataMux(data0, datal, dataSel, outData);

input [`DATA_SIZE-1:0] data0, data1;
input dataSel;
output [`DATA_SIZE-1:0] outData;

// cache controller must generate a 1 for read_cache and
// 0 for read_miss states for dataSel lines.

assign outData = dataSel ? data0: data1;

endmodule

Example 12-4. Synthesizable parts of the cache system - cache control 
(sequential), mux, compare.

12.5 Exercises

Classify the following Verilog statements as synthesizable and non-synthesizable
in the logic synthesis subset.

(i) disable main_loop;
(ii) x = x * y;
(iii) if (count == 8) red = 1;
(iv) wait((clk ==1) and (state == `YELLOW);
(v) $log2(in, out); /* $log2 is a task defined via PLI */

Write a synthesizable design in Verilog for state machine for a coin-operated
sodapop machine with the following characteristics.

Coke costs 25c;
Fruit Punch Costs 30c;
Orange Juice costs 35c.

Assume that the inputs are Quarters, Nickels and Dimes followed by one of the
three choices above. Assume that exact change is always input. Outputs are the
three signals (indicating what comes out of the machine).

In the typical design flow of Figure 12-1, synthesizer is invoked before higher
level simulation. Why is this done?

1.

2.

3.
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4. Run the four examples via the synthesis tool provided with the book and obtain
the characteristics of the gate-level circuit.



13 VERILOG SUBSET FOR
LOGIC SYNTHESIS

13.1 Introduction

A design methodology, a description style and a set of constructs define the subset of
Verilog HDL that is synthesizable via logic synthesis. The design methodology has
been discussed in the various design flows as in Figures 12-1, 12-2, and 12-3. Some
details of these will be discussed during the discussion of the subset in the following
few sections. The description style has been described in the previous sections as
logic synthesis view as in Figure 12-4 and 12-5. Some aspects of these are discussed
in this section in the following paragraphs.

In describing the combinational logic, the three styles and corresponding Verilog
constructs can be clearly used with the restrictions of no feedback or storage. While
describing the sequential logic part of the design, in the logic synthesis view of the
design in Chapter 12 [Figure 12-4 and 12-5], the sequential logic corresponds to the
states only. These are typically synthesized into a set of flip-flops. There are two
possible representations of this—structural or rtl.

Structurally, one can directly instantiate registers into a Verilog description,
selecting from any element in an ASIC library. Clocking schemes can be arbitrarily
complex. You can choose between a flip-flop and a latch-based architecture. This
forms the structural style of describing states. In this method, the Verilog description
is specific to a given technology because you choose structural elements from that
technology library. However, you can isolate the portion of your design with directly
instantiated registers as a separate component (module), then connect it to the rest of
the design. The description is more difficult to write.

Alternately, you can use the state machine using the model in Figure 12-5 where
states are specified as reg with clock edges determining the changes in state. The
advantages to this approach directly counter the disadvantages of the previous
approach. With register inference, the Verilog description is much easier to write,
and it is technology independent. This method allows the synthesizer to select the
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type of component inferred based on constraints. As seen in the next chapter, a
mixed style whereby the flip-flops are inferred in your model but they are technology
independently described can also provide a method of generating sequential logic.

The preceding paragraph’s description of combinational and sequential logic
descriptions leads to a set of constructs in Verilog that can be synthesized or a logic
synthesis subset. This is described in the remaining sections of this chapter and in
the next chapter which focuses on special elements like registers, latches, 3-states
and multiplexor descriptions.

Some special sequential circuits beyond state machines can be synthesized either
as direct mapping to presence of such circuits in the target technology or by
translation or by synthesis. One such example is that of counters. Such elements are
also described in the next chapter.

Note: In using constructs outside this subset, the synthesizers deal with this in two
ways: either to ignore the construct and continue synthesis process or report
an error in input syntax and abort the synthesis process.

During simulation and top-down design process, it is necessary to use constructs
such as system tasks and functions as well as provide more details than are usable in
synthesis (for example, delays). Such constructs are ignored by the synthesizers.
Such constructs do not describe the core functionality of the design. On the other
hand, there are constructs that describe functionality. An example of this will be
using arbitrary events based model like that of a microprocessor when instructions
are modeled. Such constructs are flagged as errors during analysis for synthesis. A
complete formal description of this classification is provided in Appendix B.

13.2 Structural Descriptions – Modules

The following structural constructs are synthesizable.
Modules

Macromodules

Port Definitions

Module Instantiations

Parameters
In section 3.10, we saw the Verilog high-level structural constructs. As seen in he

above list, all of those constructs are supported for synthesis. Thus, the hierarchical
top-down or bottom descriptions of modules is supported in synthesis. Module
definitions are fully supported. The port definitions are fully supported in all the
forms—the normal, and the named, with support for expressions at the port
declarations including concatenations. The module instantiations can be used freely
in synthesizable descriptions. Both types of port associations—positional and named
notations are supported. The parameter support depends partially on synthesis
implementations—the defparam statement is not supported and parametrization may
depend on intervention with the later stages in synthesis and with the libraries of
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design being analyzed. section 13.7 describes the usage of parametrized designs
during synthesis.

The synthesis typically preserves the module boundaries, although controls are
available to merge modules and optimize across modules. The partitioning problems
is still best solved by the designers.

Macromodules

The macromodule construct makes simulation more efficient by merging the
macromodule definition with the definition of the calling (parent) module. However,
the synthesizer treats the macromodule construct as a module construct. Whether you
use module or macromodule, the synthesis process, the hierarchy it creates, and its
end result are the same. Example 3-2 shows how to use the macromodule construct.

The support for the other constructs is same as that discussed before in Chapter 3
with the exception of the parameters.

13.3 Declarations – Overview

The Synthesizer front end recognizes the following Verilog statements and
constructs when they are used in a Verilog module:

parameter declarations

wire, wand, wor, tri, supply0, and supply1 declarations

reg declarations

input declarations

output declarations

inout declarations

13.4 Module Items – Overview

Continuous assignments

Module instantiations

Gate instantiations

Function definitions

always blocks

task statements

13.5 Synthesizing Net Types

Synthesizable wire types include wire, wand, wor, tri, supply0, and supply1. These
have been explained in section 2.5. You can define an optional range for all the data
types presented in this section. You can assign a delay value in a wire declaration,
and you can use the Verilog keywords scalared and vectored for simulation. The
synthesizer accepts the syntax of these constructs, but both these constructs are
ignored when the circuit is synthesized.
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Note: You can use delay information for modeling, but Synthesizer ignores delay
information. If the functionality of your circuit depends on the delay
information, Synthesizer may create logic whose behavior does not agree
with the behavior of the simulated circuit.

In the Verilog language, an undriven wire defaults to a value of Z (high
impedance). However, synthesis leaves undriven wires unconnected. Multiple
connections or assignments to a wire simply short the wires together.

13.6 Continuous Assignments

Synthesis support includes both methods of continuous assignments—the implicit
and the explicit continuous assignments. The left side of a continuous assignment
can be:

A wire, wand, wor, or tri.

One or more bits selected from a vector.

A concatenation of any of these.
The right side of the continuous assignment statement can be any supported

Verilog operator or any arbitrary expression that uses previously declared variables
and functions.

Verilog allows you to assign drive strength for each continuous assignment
statement. Synthesizer accepts drive strength, but it does not affect the synthesis of
the circuit. Thus, when using drive strength in your Verilog source, this can be a
factor. Assignments are done bit-wise, with the low bit on the right side assigned to
the low bit on the left side. If the number of bits on the right side is greater than the
number on the left side, the high-order bits on the right side are discarded. If the
number of bits on the left side is greater than the number on the right side, operands
on the right side are zero-extended

Typically combinational logic circuits can be built using this construct.
Example 12-1 of adder is a typical example of this usage.

13.7 Module instantiations – Parametrized Designs

The Verilog language allows you to create parameterized designs by overriding
parameter values in a module during instantiation. In Verilog, you can do this with
the defparam statement or with the following syntax.

module_name #(parameter_value,parameter_value,...) instance_name (terminal_list)

Synthesizer does not support the defparam statement, but does support the syntax
above. The module in Example 13-1 contains a parameter declaration.

module m(a,b,c);
parameter width = 8;
input [width-1:0] a,b;
output [width-1:0] c;
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assign c = a & b;
endmodule

Example 13-1. Parametrized design.

In Example 13-1, the default value of the parameter width is 8, unless you
override the value when the module is instantiated. When you change the value, you
build a different version of your design. This type of design is called a parameterized
design. Parameterized designs are read into dc_shell as templates with the read
command. These designs are stored in an intermediate format so that they can be
built with different (nondefault) parameter values when they are instantiated.

If you use parameters as constants that never change, do not read in your design
as a template. One way to build a template into your design is by instantiating it in
your Verilog code. Example 13-2 shows how to do this.

module param (a,b,c);
input [3:0] a,b;
output [3:0] c;
foo #(4) U1(a,b,c);
//instantiate foo

endmodule

Example 13-2. Instantiating a parameterized design in your Verilog code.

Example 13-2 instantiates the parameterized design, foo, which has one
parameter, assigned the value 4. Since module foo is defined outside the scope of
module param, errors such as port mismatches and invalid parameter assignments
are not detected until the design is linked. When Synthesizer links module param, it
searches for template foo in memory. If foo is found, it is automatically built with the
specified parameters. Synthesizer checks that foo has at least one parameter and
three ports, and that the bit-widths of the ports in foo match the bit-widths of ports a,
b, and c. If template foo is not found, the link fails.

13.8 Structural Descriptions – Gate-Level Modeling

Verilog provides a number of basic logic gates that enable modeling at the gate level.
Gate-level modeling is a special case of positional notation for module instantiation
that uses a set of predefined module names. Synthesizer supports the following gate
types:

and
nand
or
nor
xor
xnor
buf
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not
tran

The details of these and other gate type is given in section 6.2 on Gates.
Synthesizers typically optimize boolean functions and the above set of gates
represents the set of boolean functions. In addition tri-stating is also supported using
higher-level constructs than transistors—either gates or rtl/behavioral descriptions.

Connection lists for instantiations of a gate-level model use positional notation. In
the connection lists for and, nand, or, nor, xor, and xnor gates, the first terminal
connects to the output of the gate, and the remaining terminals connect to the inputs
of the gate. You can build arbitrarily wide logic gates with as many inputs as you
want.

Connection lists for buf, tran, and not gates also use positional notation. You can
have as many outputs as you want, followed by only one input. Each terminal in a
gate-level instantiation can be a 1-bit expression or signal. In gate-level modeling,
instance names are optional. Drive strengths and delays are allowed, but they are
ignored in synthesis. Example 13-3 shows two gate-level instantiations.

not (out1,in);
or o4(out2, in1, in2, in3, in4);
xor x3(out3, in1, in2, in3);

Example 13-3. Gate-level instantiations.

Note: Delay options for gate primitives are parsed but ignored by Synthesizer.
Because a synthesizer typically ignores the delay information, it may create
logic whose behavior does not agree with the simulated behavior of the
circuit.

Three-State Buffers

Synthesizer supports the following gate types for instantiation of three-state gates:

bufif0 (active low enable line)

bufif1 (active high enable line)

notif0 (active low enable line; output inverted)

notif1 (active high enable line; output inverted)

Connection lists for bufif and notif gates use positional notation. Specify the order
of the terminals as follows: The first terminal connects to the output of the gate. The
second terminal connects to the input of the gate. The third terminal connects to the
control line. Example 13-4 shows a three-state gate instantiation with an active high
enable and no inverted output.

module three_state (in1,out1,cntrl1);
input in1,cntrl1;
output out1;
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bufif1 (out1,in1,cntrl1);
endmodule

Example 13-4. Three-state gate instantiation.

13.9 Expressions

In Verilog, expressions consist of a single operand or multiple operands separated by
operators. Use expressions where a value is required in Verilog. The expressions are
described in detail in section 3.4.4. Here we discuss the expressions that are
supported under synthesis.

Operand Types

Synthesis does not support real numbers or time or event types. All operations on bits
and reals are supported for synthesis. Thus the supported types include:

numbers

wires and regs

bit-selects

part-selects

function calls

Constant Valued Expressions

These are optimized during synthesis and their values are computed at compile-time
and no corresponding hardware is generated for these. Thus, it is beneficial to add as
many constant valued expressions as possible. Usage of parameters and constants
rather than reg types will help in such situations. Constants are also propagated to
see if the next level of expressions also is a constant valued expressions indirectly
specified as such.

Handling Comparisons to X or Z

Comparisons to an X or a Z are always ignored. If your code contains a comparison
to an X or a Z, a warning message is displayed indicating that the comparison is
always evaluated to false, which might cause simulation to disagree with synthesis.

For example, the variable B in the following code (from a file called test2.v) is
always assigned to the value 1, since the comparison to X is ignored.

always begin
if(in1==1'bx)

out = 0;
else

out= 1;
end
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Example 13-5. Synthesis and comparisons to X.

When a synthesizer reads this code, the following warning message is generated.
Warning: Comparisons to a "don't care" are treated as always being false in routine
test 2 line 10 in file `test2.v'.

This may cause simulation to disagree with synthesis. For an alternate method of
handling comparisons to X or Z, one can direct the synthesizer to not synthesize this
but translate this by hand. Directives like the // synthesis translate_off directive //
synthesis translate_on directives exist for this operation. Inserting these directives
might cause simulation to disagree with synthesis.

13.10 Behavioral Modeling for Synthesis

Using Behavioral Constructs

Behavioral statements can be used to describe combinational circuitry or sequential
logic. Combinational logic is described using always blocks or continuous
assignments with functions providing the behavioral descriptions.

To describe combinational logic, you write a sequence of statements and operators
to generate the outputs you want. For example, suppose the + operator is not
supported, and you want to create a combinational adder where the bit-by-bit
structure is determined by the functional description.. The easiest way to describe
this circuit is as a cascade of full adders, as in Example below. The example has four
full adders, with each adder following the one before. From this description,
Synthesizer generates a fully combinational adder.

module f_add(add, i1, i2);
input [3:0] i1, i2;
output [4:0] add;
function [4:0] FourBitAdd;

input [3:0] a, b;
reg c;
integer i;
begin

c = 0;
for (i = 0; i <= 3; i = i + 1) begin

FourBitAdd[i] = a[i]̂  b[i]^ c;
c = a[i] & b[i] | a[i] & c | b[i] & c;

end
adder[4] = c;

end
endfunction

assign add = adder(i1, i2);
endmodule

Example 13-6. Synthesizable combinational 4-bit adder using functions and
continuous assignments.
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The Examples 12-2 containing a combinational multiplexor described
behaviorally. It is reproduced below:

// Multiplexor(Combinational Logic example):

`define DATA0 0
`define DATA1 1
`define DATA2 2
`define DATA3 3

module mux42(out, data, sel);

input [3:0] data;
input [1:0] sel;

output out;
reg out;

reg [3:0] data;
reg [1:0] sel;

always @(data or sel)
case (sel)

`DATA0 : out = data[0];
`DATA1 : out = data[l];
`DATA2 : out = data[2];
`DATA3 : out = data[3];

endcase
endmodule

Example 13-7. Synthesizable combinational multiplexor.

The functions can also be used with the always statement. For example, the
continuous assignment in the ripple carry adder above can be replaced with the
following always statement:

always @(i1 or i2)
add = adder(i1,i2);

Thus, descriptions with functions can be seen as a clear way of describing
combinational logic behaviorally while describing the rules of writing combinational
logic outside of functions will be a little more involved as seen in the following
pages.

Any feedback is considered sequential but there are certain simple situations
where a synthesis tool is able to determine whether the feedback results in
combinational or sequential logic. Consider the following situation:
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out = b;
if (var)

out = out + a;

Example 13-8. A behavioral description with feedback that is not real.

In this case, var1 gets a value of (a+b) if var2 is non-zero. Thus, there is no real
feedback. Thus synthesizer determines values assigned to a variable in each state and
then checks for feedback for the complete expression.

13.11 Function Declarations

Function declarations are one of the two primary methods for describing
combinational logic. The other method is the always block, described later in this
chapter. You must declare and use Verilog functions within a module. You can call
functions from the structural part of a Verilog description by using them in a
continuous assignment statement, or as a terminal in a module instantiation. You can
also call functions from other functions or from always blocks. Synthesizer supports
the following Verilog data declarations in behavioral descriptions and in functions:

input declarations

reg declarations

memory declarations

parameter declarations

integer declarations

13.11.1 Data Declarations in Functions – Reg, Input, Memory,
Parameter, and Integers

reg Declarations

The synthesizable Verilog language allows you to assign a value to a reg variable
only within a function or an always block. In the Verilog simulator, reg variables can
hold state information. A reg can hold its value across separate calls to a function. In
some cases, Synthesizer emulates this behavior by inserting flow-through latches. In
other cases, this behavior is emulated without a latch.

Memory Declarations

The memory constructs are converted to a bank of registers in synthesis. Sample
memory declarations are shown in Example 13-9 below:

reg [31:0] bus;
reg [31:0] memory [255:0];

Example 13-9. Memory declarations – synthesized as bank of registers.
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In Example 13-9, word is a 32-bit register and memory is an array of 256
registers of 32-bit width. You can index the memory to access individual registers,
but you cannot access individual bits of a memory directly. Instead, you must copy
the appropriate register into a one-dimensional register. For example, the following
code accesses the bit of the location of memory.

bus = memory [0];
bit = bus [0];

Example 13-10. Accessing bits within a memory block.

Parameter Declarations

You can declare parameter variables as local to a function. However, you cannot use
a local variable outside that function. Parameter declarations in a function are
identical to parameter declarations in a module. The function in Example 13-11
contains a parameter declaration. This is used as a constant expression. These
parameters cannot be changed like the parameters in the module and are only useful
as a symbolic representation of constants.

function carry
parameter width = 8;
input [width-l:0] a,b;
reg [width:0] add;
add = 0+(a + b);

carry = add[width];
endfunction

Example 13-11. Parameter declaration in a function.

Integer Declarations

Integer variables are local or global variables that hold numeric values You can
declare integer variables locally at the function level or globally at the module level.
The default size for integers is 32 bits. Synthesizers determines bit-widths, except in
the case of a don't-care resulting during compile. Example below illustrates integer
declarations.

integer a; //single 32 bit integer
integer b, c; //two integer declarations

13.12 Behavioral Statements Support for Logic Synthesis – Overview

The behavioral statements supported are:

procedural assignments

RTL assignments

begin ... end block statements
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i f . . . else statements

case, casex, and casez statements

for loops

while loops

forever loops

disable statements
Full Verilog HDL support for these constructs was discussed in Chapter 5. The

following paragraphs provide details of synthesizable code.

13.13 Procedural Assignments

Delays are completely ignored. The blocking and non-blocking will produce same
results for combinational logic; however for sequential logic, difference can be seen
as below:

Blocking Assignment

always @(posedge clk)
begin

rega = data;
regb = rega;

end

In this case the synthesized netlist consists of:

dff a (rega, data, clk, .....);
dff b (regb, data, clk, ...);

Non-Blocking Assignment

always @(posedge clk)
begin

rega <= data;
regb <= rega;

end

In this case the synthesized netlist consists of :

dff a (rega, data, clk,.....);
dff b (regb, rega, clk, ...);

The following restrictions apply to assignments: You cannot use procedural
assignments with blocking and non-blocking assignments at the same time. The
following example is not allowed.
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reg b,c;
always
begin

// non-blocking assignment
b <= #4a;
//blocking assignment
c = #3b;

end

13.14 if Statement

Synthesis supports if—else statements and these primarily create combinational
multiplexors. The if...else statement may cause registers to be synthesized. Registers
are synthesized when you do not assign a value to the same reg in all branches of a
conditional construct. The latch creation in if statements is explained in section
13.15. Synthesizer synthesizes multiplexer logic (or similar select logic) from a
single if statement. The conditional expression in an if statement is synthesized as a
control signal to a multiplexor which determines the appropriate path through the
multiplexor. For example, the statements in Example 13-12 below create multiplexor
logic controlled by c and places either a or b in the variable x.

if(c)
x = a;

else
x = b;

Example 13-12. if statement that synthesizes multiplexor logic.

Example 13-13 below illustrates how if and else can be used to create an
arbitrarily long if . . . else if . . . else structure.

if (instruction == ADD)
begin

carry_in = 0;
complement_arg = 0;

end
else if (instruction == SUB)

begin
carry_in = 1;
complement_arg = 1;

end
else

illegal_instruction = 1;

Example 13-13. if … else if… else structure with several mutually exclusive
conditions.
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Example 13-14 below shows how to use nested if and else statements.

if(select[l])
begin

if (select[0]) out = in[3];
else out = in[2];

end
else

begin
if (select[0])

out = in[l];
else out = in[0];

end

Example 13-14. Nested if and else statements.

13.15 Conditional Assignments

Synthesizer may synthesize a latch for a conditionally assigned variable. A variable
is conditionally assigned if there is a path that does not explicitly assign a value to
that variable. See the section on "Latch Inference" for more information. In
Example 13-15 below, the variable value is conditionally driven. If c is not true,
value is not assigned and retains its previous value.

always
begin

if ( cond )
begin

value = in;
end
out = value; //causes a latch to be synthesized for value

end

Example 13-15. Synthesizing a latch for a conditionally-driven variable.

13.16 Case Statements

Full Case and Parallel Case

Synthesizer automatically determines whether a case statement is full or parallel. A
case statement is called full case if all possible branches are specified. If you do not
specify all possible branches, but you know that one or more branches can never
occur, you can use a directive // Synthesis_full_case. To avoid creating latches,
assign a value to all variables or use the “default” statement that automatically
assigns the value specified in that statement to all unstated cases.

Synthesizers provide ways of controlling this using directives like //
Synthesis_full_case (Appendix C). This, just like the default case provides the
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method of creating multiplexors without feedback or latches for unstated cases.
However, coding this in Verilog with default statement is much better method since
this assures compatibility with simulation and timing analysis and other tools that do
not recognize the compiler directives.

Synthesizer synthesizes optimal logic for the control signals of a case statement. If
Synthesizer cannot statically determine that branches are parallel, it synthesizes
hardware that includes a priority encoder. Thus, it is a good idea to specify the case
options as constant expressions that are mutually exclusive. If Synthesizer can
determine that no cases overlap (parallel case), a multiplexor is synthesized, since a
priority encoder is not necessary. You can also declare a case statement as parallel
case with the //synthesis_parallel_case directive (see appendix C).

Example 13-16 below does not result in either a latch or a priority encoder.

input [1:0] a;
always @(cntrl or data1 or data2 or data3 or data4)
begin
case (cntrl)

2'b11:
out = data1;

2'b10:
out = data2;

2'b01:
out = data3 ;

2'b00:
out = data4;

endcase
end

Example 13-16. A case statement that is both full and parallel.

Example 13-17 below shows a case statement that is missing branches for the
cases 2'b01 and 2'b10. Example 13-17 below infers a latch for out.

input [1:0] cntrl;
always @(cntrl or data1 or data2) begin

case (cntrl)
2'b11:

out = data1 ;
2'00:

out = data2;
endcase

end

Example 13-17. A non-full but parallel case statement – synthesized with
latches

The case statement in below is not parallel or full because the values of inputs w
and x cannot be determined. However, if you know that only one of the inputs equals
2'b11 at a given time, you can use the // Synthesis parallel_case directive to avoid
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synthesizing a priority encoder. If you know that either w or x always equals 2'b11 (a
situation known as a one-branch tree), you can use the “// Synthesis full_case”
directive to avoid synthesizing a latch.

always @( in1 or in2)
begin

case (2'b11)
in1:

out = 10;
in2:

out = 01 ;
endcase

end

Example 13-18. A case statement that is neither parallel, nor full.

13.17 For Loops

The for loop repeatedly executes a single statement or block of statements. The
repetitions are performed over a range determined by the range expressions assigned
to an index. Two range expressions are used in each for loop: low_range and
high_range. Note that in the syntax lines that follow, high_range is greater than or
equal to low_range. Synthesizer recognizes both incrementing and decrementing
loops. The statement to be duplicated is surrounded by begin and end statements.

Note: Synthesizer allows four syntax forms for a for loop.

They are:

for (index= low_range;index < high_range;index= index + step)

for (index= high_range;index > low_range;index= index - step)

for (index= low_range;index <= high_range;index= index + step)

for (index= high_range;index >= low_range;index= index - step)

Example 13-19 below shows a simple for loop.

for(i = 0; i <= 31; i = i+1)
begin

sum[i] = in1[i] ^ in2[i] ^ cin;
cout = in1[i] & in2[i] | a[i] & cin |

in2[i] & cin;
end

Example 13-19. Example of synthesizable simple for loop.
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Note that for loops can be nested, as shown in Example 13-20 below.

for (i = 6; i >=0; i = i - 1)
for (j = 0; j <= i; j = j + 1)

if (value[j] > value[j+1]) begin
temp = value[j+1];
value[j+l] = value[j];
value[j] = temp;

end

Example 13-20. Example of nested for loops that can be synthesized.

You can use for loops as duplicating statements. Example 13-20 below shows a
for loop that is expanded into its longhand equivalent.

for (i=0; i < 8; i=i+1)
out[i] = in1[i] & in2[7-i];

Example 13-21. For loop used for duplicating statements.

out[0] = in1[0] & in2[7];
out[1] = in1[1] & in2[6];
out[2] = in1[2] & in2[5];
out[3] = in1[3] & in2[4];
out[4] = in1[4] & in2[3];
out[5] = in1[5] & in2[2];
out[6] = in1[6] & in2[1];
out[7] = in1[7] & in2[0];

Example 13-22. Equivalent expansion of for loop in Example 13-20.

While Loops

The while loop executes a statement until the controlling expression evaluates to
false. A while loop creates a conditional branch that must be broken by an @
(posedge clock) or @ (negedge clock) statement to prevent combinational feedback.
Synthesizer supports while loops, if you insert an @ (posedge clock) or @ (negedge
clock) expression in every path through the loop. Example below shows an
unsupported while loop that has no event-expression. This follows with the policy of
feedback going via states, that is the only storage must be into states.

always
while (in1 < in2)

out = in1 + in3;

Example 13-23. Unsupported while loop.

If you add @ (posedge clock) expressions after the while loop in Example 13-23
above, you get the supported version shown in example below:
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always
begin @ (posedge clock)

while (x < y)
begin

@ (posedge clock);
x = x + z;

end
end;

Example 13-24. Supported while loops.

13.18 Forever Loops

Infinite loops in Verilog use the keyword forever. You must break up an infinite loop
with an @ (posedge clock) or @ (negedge clock) expression to prevent
combinational feedback, as shown in Example 13-27 below:

always
forever
begin

@ (posedge clock);
out = out + in;

end

Example 13-25. Supported forever loop.

You can use forever loops with a disable statement to implement synchronous
resets for flip-flops. The disable statement is described in the next section
Example 13-27 shows usage of forever combined with disable to specify synchronous
reset condition.

13.19 Disable Statements

Synthesizer supports the disable statement when you use it in named blocks. When a
disable statement is executed, it causes the named block to terminate. A comparator
description that uses disable is shown in Example 13-26 below.

module equal(out, in1, in2);
output out;
reg out;
input [7:0] in1, in2;
reg [3:0] I;
always @ (in)

begin: loop
for (i = 7; i >= 0; i = i - 1)
begin
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out = in1[I]!=in2[I];
if (out)
//Inequality found; comparison is done and time to stop

looping
disable loop;

end
end

endmodule

Example 13-26. Loop exiting using disable – a comparator model.

Note that the example above describes a combinational comparator. Although the
description appears sequential, the generated logic runs in a single clock cycle. You
can also use a disable statement to implement a synchronous reset, as shown in
Example 13-27 below:

always
forever
begin: reset_label
@ (posedge clock);

if (reset) disable reset_label;
task1;;

@ (posedge clock);
if (reset) disable reset_label;
task2;

end

Example 13-27. Synchronous reset of state register using disable in a forever
loop.

The disable statement in Example 13-27 above causes the block reset_label to
terminate immediately and return to the beginning of the block. Therefore, the first
state in the loop is synthesized as the reset state.

13.20 Task Statements

Task statements are similar to functions in Verilog, except they can have output and
inout ports. You can use the task statement to structure your Verilog code so that a
portion of code can be reused.

In Verilog, tasks can have timing controls and they can take a nonzero time to
return. However, Synthesizer ignores all timing controls, so synthesis might disagree
with simulation if the timing controls are critical to the function of the circuit.
Example 13-28 below shows how a task construct is used to define an adder function.

module task_example (a,b,c);
input [7:0] a,b;
output [7:0] c;
reg [7:0] c;
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task adder;
input [7:0] a,b;
output [7:0] adder;
reg c;
integer i;
begin

c = 0;
for (i = 0; i <= 7; i = i+1) begin

adder[i] = a[i] ^ b[i] ^ c;
c = (a[i] & b[i]) | (a[i] & c) | (b[i] & c);

end
end

endtask

always
adder (a,b,c); //c is a reg

endmodule

Example 13-28. Using tasks to describe synthesizable combinational logic.

13.21 Always Blocks

An always block can imply latches or flip-flops, or it can specify purely
combinational logic. An always block can contain logic triggered in response to a
change in a level or the rising or falling edge of a signal. The syntax of an always
block is:

always @ ( event-expression [or event-expression*]) begin
... statements ...

end

The event-expression declares the triggers, or timing controls. The word or
groups several triggers. The Verilog language specifies that if triggers in the event-
expression occur, the block is executed. Only one trigger in a group of triggers needs
to occur for the block to be executed. However, synthesizer ignores the event-
expression unless it is a synchronous trigger that infers a register. In the next
chapter, we discuss the details of this issue. A simple example of an always block
with triggers is:

always @ (in1 or in2 or in3 or in4)
begin

out = in1 & in2 | ~in3 ^ in4
end

Example 13-29. A simple always block describing synthesizable
combinational logic.
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In Example 13-29 above, a, b, and c are asynchronous triggers. If any.triggers
change, the simulator resimulates the always block and recalculates the value of f.
Synthesizer ignores the triggers in this example since they are not synchronous.
However, you must indicate all variables that are read in the always block as triggers

For a synchronous always block, Synthesizer does not require all variables to be
listed. An always block is triggered by any of the following types of event-
expressions:

1. Event expression entailing change in the value of a reg or a net:

always @ ( identifier ) begin
... statements ...

end

Example 13-30. Event expression indicating sensitivity or input to a block.

In the example above, the trigger simply indicates that the identifier is an input to
the block synthesized from the statements within the begin-end block above.

2. The rising edge of a clock – As shown in the Example 13-31, event-expressions
can model rising clock-edges.

always @ (posedge event) begin
... statements ...

end

Example 13-31. Event expression indicating rising edge of clock.

3. The falling edge of a clock – As shown in the Example 13-32, event-expressions
can model falling clock edges.

always @ ( negedge event )
begin

... statements ...
end

Example 13-32. Falling clock edge modeled in event-expression.

4. A clock combined with an asynchronous reset condition.

always @ ( posedge CLOCK or negedge reset )
begin

if !reset begin
... statements ...

end
else begin
... statements ...

end
end

Example 13-33. Event expression modeling clock-edge combined with
resetting condition.
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When the event-expression does not contain posedge or negedge, combinational
logic (no registers) is usually generated, although flow-through latches can be
generated as seen before for if and case statements.

Functions can not contain event controls in Verilog. Tasks support such modeling
in Verilog but synthesis does not support such modeling. The event controls must be
contained in the always blocks as in all the examples above.

13.22 Incomplete Event (Sensitivity) Specification

An always block can be misinterpreted if you do not list all signals entering an
always block in the event specification prior to the evaluation. As expected,
synthesizer builds a 4-input gate-logic for the description in the example below.

always @ (in1 or in2 or in3)
begin

out = in1 & in2 | ~in3 ^ in4
end

Example 13-34. Incomplete event list – simulation and synthesis may
mismatch.

When this description is simulated, f is not recalculated when c changes because c
is not listed in the event-expression. The simulated behavior is not that of a 3-input
AND gate. The simulated behavior of the description in example below is correct
because it includes all signals in the event-expression.

always @ (in1 or in2 or in3 or in4)
begin

out = in1 & in2 | ~in3 ^ in4
end

Example 13-35. Complete event list.

In some cases, you cannot list all signals in the event specification. Example
below illustrates this situation. Here the behavior is like one of edge-sensitive flip-
flop.

always @ (posedge c or posedge p)
if (p)

out = data;
else

out = resetval;

Example 13-36. Incomplete event list for edge-triggered flip-flop with
asynchronous reset.
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13.23 Exercises

1.

2.

3.

4.

What does a logic synthesizer do with the following constructs: delayed
assignments, drive-strength, switch-level primitives, force statement, continuous
assignments.

Run Example 3-27 in section 3.9 through the synthesis tool provided with the
book. Compare the pre- and post-synthesis design simulation results.

Does a synthesis tool handle dynamic loops where the loop size is a variable?

What is the difference between if-else-if and case statement synthesis especially
when the parallel-case and full-case directives are present?



14 SPECIAL

CONSIDERATIONS IN
SYNTHESIZING VERILOG

A synthesizer in general maps the logic into gate-level descriptions with boolean
functions. A few special types of constructs are recognized at higher level and
mapped into logic-blocks. These include registers (latches and flip-flops),
multiplexers, and three-state devices. These are recognized from the source
description using some modeling guidelines. This chapter discusses methods of
inferring these special devices—different types of registers, multiplexers and three-
state devices. This part of special considerations is discussed in sections 14.1 to
14.3.

A technique used in synthesis at higher levels of abstraction is known as resource
sharing. This allows the same resource to be shared amongst different blocks of
hardware functional units thereby optimizing the number of resources needed in the
design. The special considerations that are done while modeling in Verilog for
effective resource sharing is discussed in section 14.4 to 14.5.

14.1 Inferring Registers

14.1.1 Introduction

A register inference allows you to use sequential logic in your design descriptions
and keep your designs technology independent. A register is a simple, one-bit
memory device, either a latch or a flip-flop A latch is a level-sensitive memory
device. A flip-flop is an edge-triggered memory device.

14.1.2 Latch Inference

Because variables can hold state over time in simulation, synthesizer needs to
duplicate this condition in hardware. It does this by inserting a D-type flow-through
latch. The latch allows a variable to hold its value (state) until that value is
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reassigned. A variable must hold its state when its previous value may change,
because of a condition in an if statement. When the condition is true, the value is
reassigned. Since the condition might be false, the variable must be able to hold its
state. Therefore, a latch is created to hold the previous value of the variable. For
example:

module latch(out, clock, data);
output out;

input clock, data;

always @ (clock or reset)
begin

if (clock) begin
out = data;

end
endmodule

Example 14-1. Creating a latch.

In Example 14-1 above, the variable out is not assigned a new value when clock
is false. A latch is synthesized with its data input connected to out.

A latch may also be created when you use a case statement. For example, the
code in Example 14-2 creates a latched binary-coded decimal (BCD) decoder.

module bcd_decode(b, d);
input [3:0] b;
output [9:0] d;
reg [9:0] d;
always @(b) begin

case(b)
4'h0: d= 10'b1;
4'h1: d= 10'b10;
4'h2: d=   10'bl00;
4'h3: d=    10'b1000;
4'h4: d=   10'b10000;
4'h5: d= 10'b100000;
4'h6: d= 10'b1000000;
4'h7: d= 10'b10000000;
4'h8: d= 10'bl00000000;
4'h9: d= 10'bl000000000;

// default: d=10’b0; Uncommenting this line will stop
latch-creation

endcase
end

endmodule

Example 14-2. Creating a latch with a case statement.
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The four bits from the input are passed to the case statement. The case statement
assigns an appropriate binary expression of the input's decimal value to output
decimal and latches that value in register decimal.

To avoid creating latches in combinational logic, the unintended feedback created
by “no change” in value during recomputation in a case of if-then-else statement
should be avoided. Assign a value to all options in a case or use the “default”
statement that automatically assigns value to all unstated cases. The code in
Example 14-2 does not create latches if the line before endcase is uncommented.
Variables declared within a function do not hold their values over time because every
time a function is called, its variables are reinitialized. Therefore, synthesizers do not
infer latches for these variables. In Example 14-3, no latches are inferred. This is
another reason to use functions for combinational logic

function my_func;
input data, gate;
reg state;
begin

if (gate)
begin

state = data;
end
my_func = state;

end
endfunction

Example 14-3. Variable declared within a function-no latches inferred.

14.1.3 Simple Flip-Flop Inference

A flip-flop is implied when you use the posedge or negedge clock constructs in an
always block, as shown below.

always @ (posedge clock) begin

end

A variable that is assigned a value in this always block is synthesized as a D-type
edge-triggered flip-flop. The flip-flop is clocked on the rising (or falling) edge of the
signal (clock) following the posedge (or negedge) keyword. With simple flip-flops
(with no asynchronous set or reset), the block's event-expression may contain only
one posedge (or negedge) statement, as shown in Example 14-4.

always @ (posedge clock)
begin

out = data;
end

Example 14-4. Creating an edge-triggered D flip-flop.

...
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This code is synthesized into a D-type positive-edge-triggered flip-flop with the
data input connected to data, the output connected to out and the clock input
connected to net clock.

14.1.4 Modeling Flip-Flops with Resets

The clock used for flip-flops is derived from the event-expression for the always
block. As shown in Example 14-4 above, the clock-edge is modeled using the
posedge clock event-expression. Resets can be modeled by adding test for posedge or
negedge of reset signal anded with your clock.

These conditions also require corresponding posedge and negedge entries in the
event-expression at the beginning of the always block. The last else clause has no
condition to test. The clocked event is assumed. The flip-flop is clocked on the rising
(falling) edge of the signal following the posedge (negedge) keyword in the event-
expression at the beginning of the always block.

module dff_with_reset(data, clock, r, out);
input clock, r, data;
output out;
reg out;

always @ (posedge clock or posedge r)
begin

if(r)
//asynchronous reset

out = 0;
else
//posedge clock is assumed

out = data;
end

endmodule

Example 14-5. Flip-flop with asynchronous reset.

module dff_with_reset(data, clock, r, out);
input clock, r, data;
output out;
reg out;

always @ (posedge clock)
begin

if(r)
//synchronous reset

out = 0;
else
//posedge clock is assumed

out = data;
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end
endmodule

Example 14-6. Flip-flop with synchronous reset.

14.1.5 Synthesis Checks During Register Inference

During synthesis of sequential devices, a particular design will follow a set of rules
for the registers used in that design. Synthesizers can assist the designer in checking
the design rules governing these devices. Several of these rules apply to the set-reset
signals and their relationship to each other and other signals. Typically while
specifying the conditions under which a register is set or reset, synchronous and
asynchronous behavior of these is maintained throughout a design or portion of the
design. This can be checked by the synthesizer by the following ways.

Check asynchronous nature of set and reset for all registers in the design

— // Synthesis asynchronous_set_reset Check asynchronous nature of set and reset for all
registers in the design

— // Synthesis synchronous_set_reset

Another aid provided in synthesizing registers consists of setting the precedence
of set and reset signals. Normally, designers know that these two signals have the
same priority. However, in a Verilog HDL model of these, a priority encoder can be
easily generated since one has to specify one of these signals before the other.
Avoiding generation of these is done using directives -// Synthesis one_hot and //
Synthesis one_cold.

14.1.5.1 asynchronous_set_reset – The asynchronous_set_reset check causes
Synthesizer to check specified objects for the asynchronous set or reset of a latch or
flip-flop The syntax of asynchronous_set_reset is:

// Synthesis asynchronous_set_reset "object_name,..."
module m(r, s, data, control, outl, out2);

input r, s, control, data;
output outl, out2;
// Synthesis async_set_reset "reset, set"
reg y, t;

always @ (reset or set)
begin: direct_set_reset

if (reset)
y = 1'b0; //asynchronous reset

else if (set)
y = 1'b1; //asynchronous set

end
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always @ (gate or reset) //for set: (gate or set)
if (reset) //for set: if (set)
t=l'b0; //for set:t=1'b1

else if (gate)
t = d;

endmodule

Example 14-7. Asynchronous set/reset on a design.

14.1.5.2 synchronous_set_reset – The synchornous_set_reset check causes
Synthesizer to check specified objects for synchronous set or reset of a flip-flop.
This directive takes one argument of a double-quoted list of single-bit signals
separated by commas.
The syntax of synchronous_set_reset is

// Synthesis synchronous_set_reset "object_name,..."

module sync_set_reset(clk, reset, set, dl, d2, y, t);
input clk, reset, set, dl, d2 ;
output y, t;
// Synthesis sync_set_reset "reset, set"
reg y, t;

always @ (posedge clk)
begin: synchronous_reset

if (reset)
y = 1'b0; //synchronous reset

else
y = d1;

end

always @ (posedge clk)
begin: synchronous_set

if (set)
t = 1'b1; //synchronous set

else
t = d2;

end
endmodule

Example 14-8. Synchronous set/reset on a design.

14.1.5.3 One_hot – To prevent D flip-flops with asynchronous set and reset signals
from being implemented with priority-encoded logic that would prioritize the set
over the reset or vice versa, use the indications of one_hot and one_cold are used.
Not using these may cause priority-encoded implementations to occur because the
if...else construct in the HDL description specifies prioritization. The one_hot and
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one_cold directives tell Synthesizer that only one of the objects in the list is active at
one time. To define active high signals, use one_hot. To define active low, use
one_cold. Each directive has two objects specified.

The one_hot dindicator takes one argument of a double-quoted list of objects
separated by commas. This directive indicates that the group of signals (set and
reset) are one_hot, i.e., no more than one signal is active high (has a Logic 1 value)
at any one time. Users are responsible to make sure that the group of signals is really
one_hot. Synthesizer does not produce any logic to check this assertion. The syntax
of one_hot is:

// Synthesis one_hot "object_name,..."

This directive is only used for set and reset signals on sequential devices. For a
general group of signals, do not use this directive for specifying that only one signal
is hot.

module one_hot_example (reset, set, , out, data);
input reset, set;
output out;

// Synthesis one_hot "reset, set"
reg y , t ;

always @ (reset or set)
begin: direct_set_reset

if (reset)
y = 1'b0; //asynchronous reset by "reset"

else if (set)
y = 1'bl; //asynchronous set by "set"

end
// code for normal clocking cases here

endmodule

Example 14-9. Using one_hot for set and reset.

14.1.5.4 one_cold – As with the one_hot, one_cold indicator takes one argument of
a double-quoted list of objects separated by commas. This directive indicates that the
group of signals (set and reset) are one_cold, that is, no more than one signal is
active low (has a Logic 0 value) at any one time. Users are responsible to make sure
that the group of signals is really one_cold. Synthesizer does not produce any logic to
check this assertion. The syntax of one_hot is:

// Synthesis one_hot "object_name,..."

..........................
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This directive is only used for set and reset signals on sequential devices. For a
general group of signals, do not use this directive for specifying that only one signal
is hot.

module one_cold(reset, set, out; in)
input reset, set;
output out;
input in;

// Synthesis one_cold "reset, set"
reg out;
always @ (reset or set)
begin: direct_set_reset

if (~reset)
y = 1'b0; // asynchronous reset by "~reset"

else if (~set)
y = 1'bl; // asynchronous set by "~set"

end
endmodule

Example 14-10. Using one_cold for set and reset.

14.1.6 Bus Latch

The following example creates a bus latch.

module bus_latch(reset, set, control, out, in);
input reset, set, control;
input [0:1] in;
output [0:1] out

always @ (reset or set or control or in)
begin:

if (reset)
y = 0;

else if (set)
y = 2;

else if (control)
out = in;

end
endmodule

Example 14-11. Creation of a bus-latch.
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14.2 Multiplexers

Multiplexers or MUXes are widely used by hardware designers to implement
conditional assignments to signals. The Verilog model of an 8-to-l multiplexer is
given below. This will be synthesized as a multiplexer (MUX) as the directive:

//Synthesis infer_mux "mux_blk"

module mux8tol(DIN,SEL,DOUT);
input [7:0] DIN;
input [2:0] SEL;
output DOUT;
reg DOUT;
//Synthesis infer_mux "mux_blk"

always @ (SEL or DIN)
begin: mux_blk

case (SEL)
3'b000 : DOUT <=DIN[0];
3'b001: DOUT<=DIN[l];
3'b010: DOUT<=DIN[2];
3'b011:DOUT<=DIN[3];
3'b100 : DOUT <=DIN[4];
3'bl01: DOUT<=DIN[5];
3'b110 :   DOUT <=DIN[6];
3'b111: DOUT<=DIN[7];

endcase
end

endmodule

Example 14-12. An 8-1 multiplexer modeled behaviorally and synthesized to
a mux.

14.3 Three-State Inference

Synthesizer can infer three-state gates from the value (high impedance) in the
Verilog language which maps to the target technology library. When a variable is
assigned the value z, the output of the three-state gate is disabled.

Example 14-13 shows the HDL for a three-state gate.

14.3.1 Modeling a Tri-State Gate for Synthesis

module simple_threestate (enable, in, out);
input in, enable;

output out;
reg out;

always @ (enable or in)
begin
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if (enable)
out = in;

else
out=l'bz; //assigns high-impedance

end
endmodule

Example 14-13. A 3-state gate created behaviorally.

One Three-state Gate
always @ (sela or selb or a or b) begin

t=l'bz;
if(sela)

t = a;
if (selb)

t = b;
end

Example 14-14. A 3-state gate with 2 drivers.

The value z can also appear in function calls, return statements, and aggregates.
Although it is valid to use z in an expression such as if (value == 1'bz) Expressions
that compare a value to z are always evaluated as false during synthesis. This
evaluation might cause a difference between pre-synthesis and post-synthesis
simulations. The code in Example 14-15 below infers two three-state gates.

14.3.2 Modeling Two Three-State Gates

always @ (select1 or inl)
if (select)
out = in l;

else out = 1'bz;

always @(select2 or in2)
if (select2)
out = in2;

else out = 1'bz;

Example 14-15. Creation of two 3-state gates with independent controls.

The Verilog conditional statement may also be used to infer three states.

14.3.3 Registered or Latched Three-State

When a variable is registered (or latched) in the same always block in which it is
three-stated, the enable pin of the three-state is also registered (or latched).
Example 14-16 shows an example of this code.

module enable_ff (clock, condition, enable, in, out);
input in, enable, condition, clock;
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output out;
reg out;

always @ (posedge clock)
begin

if (enable)
out = ( ~condition) ? in : out;

else
out= 1'bz;

end
endmodule

Example 14-16. Three-state with registered enable.

14.3.4 Three-State with Registered Enable

In Example 14-16, the three-state gate has a register on its enable. To remove the
register from the enable, use two always blocks to separate the register inference
from the three-state gate inference, and add a register temp, as shown in
Example 14-17.

module threestate_noreg_ff (clock, condition, enable, in, out);
input in, enable, condition, clock;
output out;
reg out;
reg temp;

always @ (posedge clock)
begin //flip-flop on input

if (condition)
temp = in;

end

always @ (enable or temp)
begin

if (enable) //three-state
out = temp;

else
out= 1'bz;

end
endmodule

Example 14-17. Three-state without registered enable.

Synthesizer can infer three-state gates from the value (high impedance) in the
Verilog language which maps to the target technology library. When a variable is
assigned the value z, the output of the three-state gate is disabled.
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14.4 Designs via Resource Sharing

14.4.1 Introduction

Resource sharing is a common term for synthesis techniques that applies to the
assignment of same operation (for example, +) from different statements to a
common library cell. Library cells are the resources—they are equivalent to built
hardware units. Resource sharing or sharing of these units of hardware amongst
different operations or statements in Verilog is an excellent optimization method.
Without resource sharing, each Verilog operation is built with separate circuitry. For
example, every + with non-computable operands causes a new adder to be built. This
repetition of hardware increases the area of a design. In contrast, with resource
sharing, several Verilog + operations can be implemented with a single adder, which
reduces the amount of hardware needed. Also, different operations such as + and -
can be assigned to a single adder/subtracter to further reduce area or number of gates
in an implementation of a Verilog model.

The three sharing methods of resource sharing while using a synthesizer are:
Automatic or Synthesizer driven,

Manual or designer driven, and

Automatic with designer’s knowledge fed back into the system.
In automatic sharing, Synthesizer completely handles the job of resource-sharing

without any knowledge on part of the user. In designer-driven sharing, directives are
given to the synthesizer to assign operations to resources, and the operations shared
are explicitly assigned to the same resource. In automatic sharing with designer’s
feedback, , you insert manual control statements in your Verilog source that assign
operations to resources, and the undeclared resource-mappings are handled by the
synthesizer. In general, manual controls modify the sharing configuration produced
through automatic sharing to solve a specific problem, such as a violated timing
constraint. When interacting with the synthesizer, several reports are available—like
any software tool Use these to optimize and generate designs that meet all your
criteria and needs.

14.4.2 Sharable Resources

Not all operations in your design can be shared. This section describes how to tell
whether operations are candidates for sharing. Typically the datapath or the
Arithmetic Logic Units can be shared. Control is inherently a non-sharable logic
unit.

The following operators in Verilog can be shared:

*
+ -
> > = < < =
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The shared resources above are those with same operation repeated elsewhere or
similar operations like comparsions of various kinds and between add and subtract.

Operations can be shared only if they lie in the same always block. When units
are in different blocks, their control is independent and thus, all the environment (or
peripheral circuits) is not reproducible and thus is not a sharable resource. Shared
resources must be exact matches in terms of not only their functionality but all their
connections.

Example 14-18 shows several possible sharings.

always @(xl or yl or zl or w1 or conditiona)
begin

case(conditiona)
‘ b 0 : a l = x l + y l ;
‘bl : al =z l+wl ;

end

always @(x2 or y2 or z2 or w2 or conditionb)
begin

case (conditionb)
‘b0 : z2 = a2 + b2;
‘bl :z2 = c2 + d2;

end

Example 14-18. Sharing of adder resources.

The table in Figure 14-1 summarizes the possible sharings in Example 14-18. A
no indicates that sharing is not allowed because the operations lie in different always
blocks. A yes means sharing is allowed.

We can see that A1+B1 and C1+D1 occur in the same always block and can
potentially share a resource.

In addition, their control path is mutually exclusive that is either one or the other
may happen at any given time but not both.
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14.5 Control Flow and Data Flow with Sharing

Two operations may be shared only if no execution path exists from the start of the
block to the end of the block that reaches both operations. For example, if two
operations lie in separate branches of an if or case statement, they are not on the
same path (and can be shared). In Example 14-18, we shared resources amongst add
operations on separate branches. In Example 14-19, the add of (a+b) and the adds for
(c+d) lie on the same path and cannot share a resource. Since the sharing is done
either in time or in space, i.e., in multiplexed connections to a resource, only one set
of inputs will be active at a given time.

always
begin

zl = a + b;
if(cond_l)

z2 = c + d;
else
begin

z2 = e + f;
end

Example 14-19. Shared resources have independent  paths.

always
begin

x = a + b;
case(op)

2'h0:z2 = c+d;
2'hl:z2 = e+f;
2'h2: z2 = g+h;
2'h3: z2 = i+j;

endcase
end

Example 14-20. Case statement sharing.

In the Example 14-20, the four branches of case statements can share the adder
resource. However, the first adder use before the case statement for assignment to x,
needs a separate adder. Thus, total number of resources in this example is 2.

The ‘?’ operator is an exact equivalent of an if statement and the resource-sharing
rules that apply to if statement also apply to the assignments using this. However,
some implementations (like Synopsys) do not treat these the same and consequently,
resources are not shared for this operator.

14.5.1 Data Flow Conflicts

Operations may not be shared if doing so causes a combinational feedback loop. To
understand how sharing can cause a feedback loop, consider Example 14-18 below:
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always @(a or b or c or d or e or f or z or add_b)
begin

if(add_b) begin
temp_l = a + b;
z = temp_l + c;

end
else begin

temp_2 = d + e;
z = temp_2 + f;

end
end

Example 14-21. Sharing may result in feedback loop.

When the a+b addition is shared with the temp_2+f addition on an adder called
rl, and the d+e addition is shared with the temp_l+c addition on an adder called r2,
a feedback loop results. The variable temp_l connects the output of rl to the input of
r2. the variable temp_2 connects the output of r2 to the input of rl, and a feedback
loop is created.

The circuit generated has the multiplexing conditions never allow the entire path
to be activated simultaneously. Still, Synthesizer's resource sharing mechanism does
not allow combinational feedback paths to be created because most timing verifiers
cannot handle them properly.

14.5.2 Resource Area

Resource sharing reduces the number of resources in your design, which reduces
resource area. The area of a shared resource is a function of the types of operations
that are shared on the resource, and their bit-widths. The shared resource is made
large enough to handle the largest of the bit-widths and powerful enough to perform
all the operations. Resource sharing usually adds multiplexers to a design to channel
values from different sources into a common resource input. In some cases, resource
sharing reduces the number of multiplexers in a design.

Multiplexer area is a function of both the number of multiplexed values.

14.5.3 Resource Sharing Methods

14.5.3.1 Synthesizer Driven (Automatic) Resource Sharing – Automatic resource
sharing is the simplest way to share components and reduce design area. This
method is ideal if you do not know how you want to map the operations in your
design onto hardware resources. In automatic sharing, Synthesizer identifies the
operations that can be shared.

14.5.3.2 Designer Driven and Mixed Designer and Synthesizer Driven – In
automatic production of synthesized logic, the timing and area constraints can be met
or not met. However, the real life designs involves tradeoffs between the two and
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between other features (functionality) and design techniques. Thus, an interactive
loop whereby one can automate tasks that one is satisfied with and manage the other
parts in a iterative fashion to some extent is possible by interacting with the
synthesizer. However, that involves intimate knowledge of workings of synthesis
algorithms and techniques. Resource sharing is one such algorithm where this
understanding is possible and interaction is designed into synthesizer tools. Thus,
one can specify different operations mapping into resources and then specify which
resources are shared between which units—in effect directing the design’s creation
of units like multiplexers [shared resources must be multiplexed], and the datapath
elements. Mapping of the resources into the hardware library units is also done in
this process. Several interaction commands involve setting of global parameters and
then making exceptions to these at the local level.



15 SPECIFY BLOCKS —

TIMING DESCRIPTIONS

15.1 Overview

The specify blocks describe module timing checks and pin to pin timing in Verilog.
The timing checks include predefined systems tasks like $setup that support
programmable checks on times of value changes module pins.

Two types of HDL constructs describe delays:

Distributed delays – These model the time it takes for events to propagate
through gates, nets, udps, rtl and behavioral descriptions inside the module.

Module path delays – These describe the time it takes an event at a source [input
port or inout port] to propagate to a destination [output port or inout port].

The first types of delays above are explained earlier in the relevant sections. This
section describes how paths are specified in a module, how conditional paths are
created in a model, how delays are assigned to these paths.

1.

2.

15.2 Example

module dff(q, clk, d);
input clk, d;
output q;

specify
specparam tRise_clk_q = 150, tFall_clk_q = 200;
specparam tSetup = 70;

(clk => q) = (tRise_clk_q, tFall_clk q);

$setup (d, posedge clk, tSetup);
endspecify
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dff_logic dffi (q, d, clk);
endmodule

module dff_logic(q, data, clock);
input clock, data;
output q;

always @posedge clock
q = data;

endmodule

Example 15-1. Timing checks and path delay specifications in specify
blocks.

15.3 Specify Blocks – Syntax

specify_block
::= specify { specify_item} endspecify

specify_item
::= specparam_declaration
| path_declaration
| system_timing_check

path_declaration
::= simple_path_declaration

| edge_sensitive_path_declaration
| state_dependent_path_declaration<specify_block>

15.4 Timing Checks in Specify Blocks

Timing checks are done via pre-defined systems tasks as follows:

$setup, $hold, $width, $period, $skew, $recovery, $setuphold

The timing checks are done on the events on nets and regs with the goal of
checking the time between two events on two signals or between two events on the
same signal. More often than not, these checks are done on the inputs to flip-flops
although these can be done on any ASIC cell. In the terminology used to describe
these the following describe the arguments to the tasks above:

data_event - describes the net or the reg or an event on these that typically is
indicative of a data

reference_event is the event with whose time the difference is obtained
limit is the positive constant expression or specparam

notifier - register that changes value on the timing violation
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15.4.1 $Setup Timing Check

The setup timing check is typically performed between the data and the clock signal
for a flip-flop and checks the time needed foe setting up the data input before a
clocking edge arrives.

The arguments are:

$setup(data_event, reference_event, limit, notifier);

where

data_event is lower bound event
reference_event is upper bound event

limit is the positive constant expression or specparam
notifier - register that changes value on the timing violation

The timing check consists of:
(time of reference_event - time of data_event) < limit

EXAMPLE:
module m( );

reg notif_reg;
wire data, clock;

specify
$setup(posedge data, posedge clock, 10, notif_reg);

endspecify

always @ notif_reg
$display(“Setup violation in %m at time %t”, $time);

endmodule

15.4.2 $Hold

This check typically checks for the duration for which data signal must hold its value
to transfer the input value to the output of a flip-flop on the active clock edge. The
arguments to $hold are described in the following line:

$hold(reference_event, data_event, limit, notifier);

The timing check in $hold is done as follows:

time of data_event - time of reference_event < limit

15.4.3 $Width

This check typically checks the pulse width of a signal to be longer than the given
limit. $width has arguments as specified in the following line.
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$width(reference_event, limit, threshold, notifier);

Here check is performed between two edges of same signal.
The reference event and its opposite event are checked for limit in $width timing

check.

15.4.4 $Period

This typically checks for the time-period of a clock input to be as specified. The
arguments to $period are as follows:

$period(reference_event, limit, notifier);

The check is performed as follows: data_event is internally generated from
reference_event by using the next event same as reference_event.

Thus, period is checked for limit between two successive reference_events.
Violation is reported if (time of data_event - time of reference_event < limit)

15.4.5 $Skew

The skew check is typically performed to see if the clock signal has shifted from its
original timing due to the gating of other logic.

The arguments to $skew are as follows:

$skew(reference_event, data_event, limit, notifier);

The check is performed as follows:

(time of data_event - time of reference_event > limit)

If this is true, violation is reported.

15.4.6 $Recovery

The check for recovery time involves checking for a change in value to recover from
a changed value.

The arguments to $recovery are as follows:

$recovery (reference_event, data_event, limit, notifier);

Violation is reported if (time of data_event - time of reference_event < limit).

15.4.7 $Setuphold

This check combines the setup and the hold checks as typically these two are done
together.

This has the following format:
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$setuphold(reference_event, data_event, setup_limit,
hold_limit, notifier);

This system task is equivalent to two checks as follows:

$setup(reference_event, data_event, setup_limit, notifier);

$hold(reference_event, data_event, hold_limit, notifier);

15.4.8 Example of Timing Checks

primitive negdff(q, clock, data, preset, clear, notifier);
output q; reg q;
input clock, data, preset, clear, notifier;

table
//clock data p c notifier state q

f 0 1 1 ?: ? : 0;
f 1 11? :?:1;

n 1 1? 1 :1:1;
n 0 1 ? ? : 0 : 0;

p ? ? ? ? : ? : - ;
? ? 01 ? :? : - ;

? ? * 1 ? : 1 : 1;
? ? 10 ? : ?: 0;

? ? 10 ? : ? : 0;
? ? ? ? *; ? ; x;

endtable
endprimitive

module dff(q, qBar, clk, d, p, c);
output q, qBar;
input clk, d, p, c;

reg notifier;

and (e, p, c); //generate enable signal for dff
not (qBar, udp_out);
buf (q, udp_out);

negdff n(udp_out, clk, d, p, c, notifier);

specify
// Define timing check specparam values
specparam tsetup =10, thold =

2, tclkwidth = 20, trecover = 5, t_pc_width;
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specparam tPLHc = 4:6:9, tPHLc = 5:8:11;
specparam tPLHpc = 3:5:6, tPHLpc = 4:7:9;

//Model module path delays
(clk *> q, qBar) = (tPLHc, tPHLc);
(p, c *> q, qBar) = (tPLHpc, tPHLpc);

// Model the timing checks
$setup(d, posedge clk && e, tsetup, notifier);
$hold(d, negedge clk && e, thold, notifier);
$period(negedge clk, twidth, notifier);

$width(negedge c, t_pc_width, notifier);
$width(negedge p, t_pc_width, notifier);

$recovery(posedge c, posedge clk, (recover, notifier);
endspecify

endmodule

Example 15-2. Specify block example – timing checks on module pins.

15.5 Module Path (Delay) Declarations

15.5.1 Introduction

In specify blocks, path, and delay declarations are made together in the same
statement. These declarations fall into three categories for paths: simple, edge-
sensitive, state-dependent. These are explained below.

15.5.2 Simple Paths

15.5.2.1 Examples
(A=>Q) = 10;
(B=>Q) = (12);
(C,D*> Q, QBAR) = 18;

Example 15-3. Specify blocks – simple paths from input to output.

This example contains three statements describing paths from inputs to outputs of
a flip-flop. The last example implies all possible paths from inputs to outputs

15.5.2.2 Syntax

simple_path_declaration
::= parallel_path_description = path_delay_value;

parallel_path_description



SPECIFY BLOCKS—TIMING DESCRIPTIONS 301

::= (specify_input_terminal_descriptor[polarity_operator] =>
specify_output_terminal_descriptor)

specify _output_terminal_descriptor::=
output_identifier
| output_identifier[ constant_expression]
| output_identifier[ msb_constant_expression : lsb_constant_expression]

specify_input_terminal_descriptor
::= input_identifier
| input_identifier [ constant_expression ]
| input_identifier [ constant_expression: constant_expression ]

15.5.3 Edge-Sensitive Paths

(posedge clock => (out: in)) = (10, 8);
(clock => (out: in)) = (10,8);

Example 15-4. Edge-sensitive paths with sensitivity to positive clock edges.

The edge sensitive path specifications are stated before the simple paths as for the
clock edges in the above two examples.

15.5.3.1 Syntax

edge_sensitive_path_declaration ::=
parallel_edge_sensitive_path_declaration = path_delay_value |
full_edge_sensitive_path_description = path_delay_value

parallel_edge_sensitive_path_description ::=
([edge_identifier] )specify_input_terminal_descriptor =>

specify_output_terminal_descriptor [polarity_operator]:
data_source_expresssion

full_edge_sensitive_path_description ::=
([edge_identifier]list_of_path_inputs*>

list_of_path_outputs [polarity_opertor]: data_source_expression

15.5.4 State-Dependent Paths

15.5.4.1 Examples – The following example uses state-dependent paths to describe
the timing of an XOR gate.

module XORgate (a, b, out) ;

input a, b:
output out;
xor xl (out, a, b);

specify
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specparam noninvrise = 1, noninvfall = 2;
specparam invertrise = 3, invertfall= 4;
if (a) (b => out) = (invertrise, invertfall);
if (b) (a => out) = (invertrise, invertfall);
if (~a) (b => out) = (noninvrise, noninvfall);
if (~b) (a => out) = (noninvrise, noninvfal 1 ) ;

endspecify
endmodule

Example 15-5. State dependent path delay specifications: example
statements.

In this example, first two state-dependent paths describe a pair of output rise and
fall delay times when the XOR gate (xl) inverts a changing input. The last two state-
dependent paths describe another pair of output rise and fall delay times when the
XOR gate buffers a changing input.

Another Example

module ALU (ol, il, i2, opcode);
input [7:0] i1,i2;
input [2:1] opcode;
output [7 :0]ol;

//functional description omitted
specify
// add operation

if (opcode == 2'b00) (i1,i2 *> ol) = (25.0,25.0);
//pass-through il operation
if (opCOde == 2'b01) (i1 => ol) = (5.6,8.0);
// pass-through i2 operation
if (opcode == 2'b10) (i2 => ol) -=(5.6, 8.0);
// delays on opcode changes

(opcode => ol) = (6.1,6.5);
endspecify

endmodule

Example 15-6. State dependent path delay specifications – a full module.

15.5.4.2 Syntax
data_source_expression ::= expression
edge_identifier ::= posedge | negedge
state_dependent_path_declaration ::=

if (conditional_expression) simple_path_declaration
if (conditional_expression) edge_sensitive _path_declaration
ifnone simple_path_declaration
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15.5.5 Edge-Sensitive State-Dependent Paths

if (!reset && !clear)
(posedge clock => (out + : i n ) ) = (10, 8 );

Example 15-7. Edge sensitive state dependent path delays.

In the Example 15-6, if the positive edge of clock occurs when reset and clear are
low, a module path extends from clock to out using a rise delay of 10 and a fall delay
of 8.

The following example shows three edge-sensitive path declarations. Note that
each path has a unique edge or condition.

specify
( posedge clk => (q [ 0 ]: data)) = (10, 5 );
( negedge clk => (q[0]: data)) = (20,12);
if  (reset)

( posedge c lk=>(q[0] :da ta) ) = (15 ,8) ;
endspecify

Example 15-8. Multiple edge and state delay specifications for the same
simple path.

The two state-dependent path declarations shown below are not legal because
even though they have different conditions, the destinations are not specified in the
same way—the first destination is a part-select, the second is a bit-select.

specify
if (reset)

(posedge clk => (q [3:0]) :data)) = (10,5);
if (!reset)

(posedge clk => (q[0] :data)) = (15, 8);
endspecify

Example 15-9. Illegal state dependent delay specification.

15.5.6 State-Dependent Paths – ifnone Condition

State dependent paths enumerate conditions on a path and provide delay
specifications for that path. For that path, ‘ifnone’ ( default case) statement provides
delays when none of the states explicitly specified are attained.

if(Cl)(IN=>OUT) = (l,l);
ifnone ( IN=>OUT ) = ( 2 ,2 ) ;

Example 15-10. ifnone statements in a state dependent specification.
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In the above example, the if statement is complemented by the following ifnone
statement which indicates that when Cl is not 1 the second delay specification will
be used.

Chapter 15

// add operation
if (opcode ==2' b00) (il, i2 *> ol) = (25. 0, 25. 0);
// pass-through il operation
if (opcode == 2'b0l) (il => ol) = (5.6, 8.0);
// pass-through i2 operation
if (opcode = = 2'bl0) (i2 => ol) = (5.6, 8.0);
// all other operations
ifnone (i2 => o l ) = (15. 0,15. 0 ) ;

Example 15-11. ifnone statement – opcode dependent delays for execution
unit.

15.6 Delay Specif ications

The specify block enables specification of 1- to 12-delay elements in the delay value.
Each of the delay value could be a triplet—(minimum, typical and maximum). In the
following pages, we explain the delay specifications via different examples. The
comments preceding the delay specifications explain the different kinds of delay
specifications.

15.6.1.1 Examples of Delay Specification in Specify Blocks
// one expression specifies all transitions
(C=>Q) = 20;
(C=>Q)= 10:14:20;

Example 15-12. Delay specifications – one delay for all cases and a min-typ-
max specification.

In the above example, delays are specified for the same path in two different ways.
The example below contains specifications for a path using different levels of detail.

// two expressions specify rise and fall delays
specparam tPLHl = 12, tPHLl = 25;
specparam tPLH2 = 12:16:22, tPHL2 = 16:22:25;
(C => Q) = (tPLHl, tPHLI);

(C=>Q) = (tPLH2,tPHL2);

// three expressions specify rise, fall, and z transition delays
specparam tPLHl = 12, tPHLl = 22, tPzl = 34;
specparam tPLH2 = 12:14:30, tPHL2 = 16:22:40, tPz2 = 22:30:34;
(C => Q) = (tPLHl, tPHLl, tPzl);
(C => Q) = (tPLH2, tPHL2, tPz2);
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// six expressions specify transitions to/from 0,1, and z
specparam t0l = 12, tl0 = 16, t0z = 13,

tzl=10,tlz=14,tz0 = 34;
(C => Q) = (t0l, tl0, tOz, tzl, tlz, tz0);
specparam TOl = 12:14:24, T10 = 16:18:20, TOz = 13:16:30;
specparam Tzl = 10:12:16, Tlz = 14:23:36, Tz0 = 15:19:34 ;
(C => Q) = (TOl, Tl0, TOZ, Tzl, Tlz, TZO);

// Twelve expressions specify all transition delays explicitly
specparam t01=10, tl0=12, tOz=14, tzl=15, tlz=29, tz0=36,
tOx=14, txl=15, tlx=15, tx0=14, txz=20, tzx=30 ;

(c => Q) = (t0l, tl0, tOz, tzl, tlz, tz0,
tOx, txl, tlx, tx0, txz, tzx);

Example 15-13. Two, three, six, and twelve different delays for the same
path.

15.7 Mixing Distributed and Specified Delays

Verilog allows double specification of delays in a module. This can occur if the
specify blocks and the functional blocks both contain delay specifications for the
same paths. In other words, both path delays as well as distributed delays can be
present on the same part of the design at the same time. In such case, distributed
delays take effect as the events on the nets or regs take place -and the path delays are
induced into the design when the output end of the path changes. When mixed,
slower values take precedence -that means path delays will be effective if those
values are larger than the delays inside the module.

15.8 Multi-Driver Nets

Declaring paths on these is not legal.
However, drivers going out from a module are allowed.

15.9 Pulse Specification

PATHPULSE$ construct
Example: PATHPULSE$clk$q = (2,9); // (reject-limit, error-limit)

15.10 Exercises

1. Provide the output from the following model that uses specify block.
module dff(q, d, clk, reset);
input clk, d, reset;
output q;

specify
specparam tRise_clk_q = 150, tFall_clk_q = 200;
specparam tSetup = 70;
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(clk => q) = (tRise_clk_q, tFall_clk_q);
(reset =>q) = (20,10);

endspecify
dff_logic dffi (q, d, clk, reset);
endmodule

module dff_logic(q, data, clk, reset);
regq;
output q;
wire clk, reset, data;

always @posedge clk
q = data;

always @reset
if (reset ==1)

deassign q;
else

assign q = 0;
endmodule



16 PROGRAMMING

LANGUAGE INTERFACE

16.1 Overview and Examples

The Programming Language Interface (PLI) provides a mechanism to link non-
Verilog code into Verilog simulation system. The non-Verilog code may be a model
in another language like "C" or VHDL, a program to enhance the simulation
system's capabilities in various ways or another simulator communicating with the
Verilog simulation system. This aspect of Verilog HDL is explained in the sections
below. In essence, the PLI provides ability to write programming language (e.g., "C")
tasks that interact with a VERILOG model, and link it tightly. The commonly used
versions of PLI are OVI 1.0, 2.0 and IEEE 1364. All the three versions have the
same set of core utility and access routines. The VPI interface is added in 2.0 and
1364 recently. A program written in "C" must use the interface routines from PLI to
interact with the Verilog engine.

This ability to extend the language by way of adding keywords is achieved
through user-defined tasks and functions. For example, one can take his or her
favorite waveform-processing package, and link it in place of $gr_waves. This can
then be named $gr_waves_new() and invoked either in interactive debugging session
or in simulation at a certain point in test-bench part of the Verilog system being
built.

You may be currently using a system that displays output in certain format and
you are switching to Verilog. Then, a C task that imitates current output will enable
smooth transition. Whenever a value changes, this will print out the VERILOG
values in a format similar to existing format. This way all diagnostics that happens
post-simulation can be preserved mostly as is.

The three sets of call-backs in the PLI are:

1. Utility routines dealing with interaction to Verilog during simulation.
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2. Access routines dealing with circuit and connectivity information about Verilog
model

3. The Virtual Procedural Interface (VPI) Interface routines that provide simulation
time as well access routines.

The common applications of the Programming Language Interface are:
User interface independent of the simulator

Linking in modules outside of Verilog modules (e.g., VHDL model of
an fpga)

Adding capabilities like delay calculators

Adding simulation control capabilities like distributed simulation

Interfacing to other tools

Your creativity and imagination is the limit.

16.2 PLI Origin and Use

Programming Language Interface was developed during the development of the
Verilog simulator to facilitate the development of system tasks and functions which
are part of the Verilog HDL. This was a good software practice to develop different
parts of the simulator itself. For example, the tasks of $display, $monitor, or
$gr_waves are written and linked to the Verilog Simulation Engine using the same
PLI mechanism as explained in this chapter.

16.3 PLI Function Types

A C function invoked from within Verilog Model could be invoked in several ways
and is classified into such types. The main types are:

1. calltf functions – These are called during simulation when a task associated
with the user function is called. An example of this is $display system task
which displays the values as this task is called. A different type of invocation
takes place for $monitor which is explained in the misctf type below.

2. misctf functions – These are called during simulation but are not called directly
as a result of a call from the model. These are called due to value change on the
inputs. A familiar application of this type is Smonitor system task which is
called whenever one of its inputs changes values.

3. checktf functions – These are called at compilation time for the Verilog model
and typically perform tasks of checking for legal parameters to the task.

4. sizetf functions – This is used to obtain number of bits in a return value of a
system function but is not used for user-defined PLI functions.

5. VCL or consumer functions – The calltf functions can be modified to act like
misctf functions dynamically. VCL stands for Value Change Link and is set in
the calltf applications.
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16.4 PLI Interface Classes

PLI Routines are classified into three classes:

1. Simulation Time Routines with tf_ prefix – These are used for interacting with
the model at run-time. This is used for linking in external models and non-
Verilog simulators into the Verilog simulation system amongst other
applications. Most of the system tasks and functions are written using these
conventions. Examples of these are $display and $monitor which clearly access
the values of Verilog Model variables. Some examples of the routines here are
tf_getp() and tf_putp() which get a value and write a value.

2. Access Routines with acc_ prefix – These are used for accessing the Verilog
model data-structure and are typically used for applications such as delay
calculators. These are typically called before simulation starts and after
compilation is complete.

3. New Procedural Interface routines with vpi_ prefix – These routines provide
the ability to access the data-structure as well as perform the simulation time
functions through a new mechanism. In this method, a handle is obtained on an
object like in access methods for the access part and a traversal mechanism to
the data structure is provided using the iterate and vpi_get_next routines. This
also provides mechanism to interact with different simulation and compilation
phases.

16.5 Interface Definitions

Three header files are provided with your Verilog system:

veriuser.h, accuser.h and vpi_user.h.

Include in your "C" application.
The contents of these files are explained below. These provide the necessary “C”

data-structure definitions and the interface routines that enable a user application to
become part of the Verilog model.

16.5.1 veriuser.h

This is a header useful for interacting with Verilog via utility routines—the basic
run-time interaction mechanism. This header file:

Defines parameter passing conventions for integer, node, expression
and string values.

Defines types for node and expression data types as well as vector and
strength value structs defines task to user routine mapping and
synchronization convention.

The key to linking user-defined “C” routines to the Verilog Simulator lies in the
following definitions:



310 Chapter 16

typedef struct veriusertfs
{ int type;

int data;
void (*calltf)();
void (*checktf)();
int (* sizetf)();
void (*misctf)();

} t_veriusertfs;
_tfcell type - define 4 routines check, size, call, misc -

These coordinate "C" and Verilog activities. The callback reasons are returned in
tf_reason call. The callbacks allows you to call your routine on conditions like value
change or at the end of simulation. These also define callbacks supported for the IO
between Verilog and your application.

16.5.2 acc_user.h

This is a header useful for interacting with Verilog via access routines—the basic
compile-time interaction mechanism for accessing network data structure.

This header file defines:
Type and configuration constant definitions

e.g., accTri

acc_configure() parameters

e.g., accPathDelayCount

Edge information used by acc_handle_tchk etc

e.g., accEdge10

Version defines

e.g., accVersion16a4

Delay modes

e.g., accDelayModePath

typedefs for time, delays, values(vector, strength and general),
record,location

Flags for VCL interface

e.g., vcl_verilog_logi

CallBack Routines interface

Handle routines

e.g., acc_handle_port()

Next routines

e.g., acc_next_port()

Fetch routines

e.g., acc_fetch_value()
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Modify routines

e.g., acc_replace_delays()

Pulse Err routines

eg., acc_fetch_pulser()

Utility routines

e.g., acc_initialize()

Value Change Link routines

e.g., - acc_vcl_add()

Line Callback Routines

e.g., acc_mod_lcb_add()

16.5.3 vpi_user.h

This defines constants, data structure definitions, and routine interface definitions
used in the VPI interface.

Examples of constant definitions are:

#define vpiEdge 36 /* edge type of module path: */
#define vpiNoEdge 0x00000000 /* no edge */
#define vpiEdge0l 0x00000001 /* 0-> 1*/
#define vpiEdgelO 0x00000002 /* 1-> 0*/

Some of the data structure definitions are as below :

/***************************************************************************/

typedef struct t_vpi_time {
int type; /* [vpiScaledRealTime,vpiSimTime,vpiSuppressTime]*/
unsigned int high,low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time,*p_vpi_time;

/**************************valuestructures ****************************/

/* vector value */

typedef struct t_vpi_vecval
{
/* following fields are repeated enough times to contain vector */
int aval, bval; /* bit encoding: ab: 00=0,10=1,11=X, O1=Z */

) s_vpi_vecval, *p_vpi_vecval;

extern vpi_handle( vpiObjectType otype, vpiHandle object)

extern vpi_handle_multi();

/*** register a system task/function ***/
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extern vpi_register_systf();

/** Get information about a system task/function callback **/
extern vpi_get_systf_info();

/*** Obtain a handle by name ***/
extern vpi_handle_by_name(char *name, vpiHandle object);

**************************************************************************/

16.6 User Tasks and Functions

PLI allows one to define $xxx tasks and $yyy functions that associate with "C"
functions written by you. These tasks can then be invoked from Verilog model just
like system tasks and functions. In fact, most system functions and tasks in Verilog
are written in "C" using the conventions of programming language interface.

Example:
%cat hello.c
s_tfcell veriusertfs[] =
{

{ usertask, 0,0,0, hello, 0, "$hello", 0},
{0}

};

int helloQ

{
io_printf("Hello World!\n");

}

%cc -c hello.c
% cc verilog.o hello.o -o myverilog
%cat model.v
module m;

initial
$hello;

endmodule
%myverilog model.v
Cl>$hello;
Hello World
C2>...

16.7 Steps Involved in Defining User Tasks/Functions

1. Define the task or function name and parameters.

2. Write a checking function for checking parameters.

3. Write a function to clean on simulation finishing.

4. If the task needs to be called asynchronously (e.g., on any value change in the
simulator), define misctf parameters.
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5. Define a struct of type t_tfcell for this set of functions.

6. Write the "C" routine, using the interface utility routines to obtain parameter
values, and to interact with the Verilog model and its simulation profile, e.g. Use
tf_getp() to get integer parameters in sequence.

16.8 C Interface Components

Figure 16-1. C Interface Components for Verilog HDL

16.9 Verilog Callbacks – Utility Routines

The Appendix C contains an annotated listing of the file veriuser.h that lists all the
routines and their parameters.

16.10 Verilog Callbacks – Access Routines

The Appendix D contains an annotated listing of the file acc_user.h that lists all the
routines and their parameters.

16.11 Verilog Callbacks – VPI Routines

The Appendix E contains an annotated listing of the file vpi_user.h that lists routines
provided in this interface.

16.12 Exercises

1. Give the output of following two Verilog modules:

module m1;
reg [7:0] in, out;
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initial
begin

in = 8;
$monitor($time,,in,, out);
#100
$log2(in, out);

end
endmodule

Note: Use the $log2 task as defined using Programming Language Interface, in
the book, for both the modules.

module m2;
reg [7:0] in, out;
initial

begin
in =16;

$monitor($time,,in,, out);
#100

$log2(in, out, in);
end

endmodule

2. Most of the Verilog system tasks and functions are written using PLI in
simulators. $monitor is one such system task. Given the 'veriuser_tfs' type
definition, and a set of "C" functions.

tf_monitor_check() – Call this for compile time checks
tf_monitor() – Call this on value change of one of its parameter

Write the veriuser_tfs structure related to this task.

Similarly do the same for $display, given:
tf_display_check() – "C" function for compile time check
tf_display() – Call this when $display task is called



17 STRENGTH MODELING

WITH TRANSISTORS

17.1 Overview

This is the lowest level of modeling provided in Verilog. It also allows the greatest
levels of details in terms of the circuit-implementation at the digital level. There are
three main methods or levels in Verilog that describe transistors:

1. The first level includes unidirectional transistor models. At this level Verilog
HDL provide nmos, pmos and cmos primitives. These have the switching
behavior of the transistors including z values. The tables for these primitives
have been discussed in Chapter 6.

2. At the next level, bidirectional transistors represent the transistors in real life as
these do not have directionality. The primitives provided in this class of
transistors includes:

tran, tranif0, tranif1
rtran, rtranif0, rtranif1.

The terminals of a bidirectional transistor are of the inout type and the control
terminal is of the input type. Steady state values are computed of the whole
network, not of a single device when the circuit includes tran types. The
primitive tran is always ON and conducts on either side. The primitive tranif0 is
similar to tran but has ON/ OFF properties. It is on when the gate(or the control
signal) is 0. The primitive tranif1 is ON when the gate is 1.

3. The next level is modeling with strength values. This allows removal of
pessimism and allows transistor sizes and other electrical characteristics to be
taken into account. This level defines an algebra of an extended value-set known
as strength calculus. The value-set has now expanded from 0, 1, x, z to 128
different values. The extension occurs as each value has two components now—
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the logic value (0,1,x,z) and the strength value. Strength values are like supply
(the strongest), strong, weak, hiz (the weakest). Although eight levels of
strengths and four logic values imply 256 combinations, half of these are not
meaningful or non-distinct and this reduces the total number to 128 values.
Examples of these are: with z as a logic value, no strengths are meaningful—
implying that the 64 combinations are now reduced to 1. Similarly, for a logic
value of 1, only combinations where 1 strength is higher than the 0 strength are
meaningful. For logic value 1, the vice-versa is true.

17.2 Modeling with Unidirectional Switches – Example

//Dynamic MOS serial shift register circuit description
module shreg (out, in, phase1, phase2);

/* IO port declarations, where 'out' is the inverse
of 'in' controlled by the dual-phased clock */

output out; //shift register output
input in, //shift register input
phase1, //clocks
phase2;

tri wb1, wb2, out; //tri nets pulled up to VDD
pullup //depletion mode pullup devices

(wb1), (wb2), (out);

trireg (medium) wa1, wa2, wa3 ; //charge storage nodes

supply0 gnd; //ground supply

nmos #3 //pass devices and their interconnections
a1(wa1,in,phase1), b1(wb1,gnd,wa1),
a2(wa2,wb1 ,phase2), b2(wb2,gnd,wa2),
a3(wa3,wb2,phase1), gout(out,gnd,wa3);

endmodule

module testShReg;
wire shiftout; //net to receive circuit output value
reg shiftin; //register to drive value into circuit
reg   phase1,phase2;  //clock driving values

parameter d = 100; //define the waveform time step

shreg cct (shiftout, shiftin, phase1, phase2);

initial
begin :main

shiftin = 0; //initialize waveform input stimulus
phase1 = 0;
phase2 = 0;
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setmon; // setup the monitoring information
repeat(2) //shift data in

clockcct;
end

task setmon; //display header and setup monitoring
begin

$display(" time clks in out wa1-3 wb1-2");
$monitor ($time,,,,phase1, phase2,,,,,,shiftin,,,, shiftout,,,,,

cct.wa1, cct.wa2, cct.wa3,,,,,cct.wb1, cct.wb2);
end

endtask

task clockcct; //produce dual-phased clock pulse
begin

#d phase1 = 1; //time step defined by parameter d
#d phase1 = 0;
#d phase2 = 1;
#d phase2 = 0;

end
endtask
endmodule

Example 17-1. Unidirectional transistors: a dynamic mos serial shift
register.

17.3 Modeling with Bidirectionals and Strengths – Example
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//description of a MOS static RAM cell
module sram(dataOut, address, dataIn, write);

output dataOut;
input address, dataIn, write;

tri       w1, w3, w4, w43;

bufif1
g1(w1, dataIn, write);
tranif1
g2(w4, w1, address);
not (pull0, pull1)
g3(w3, w4), g4(w4, w3);
buf
g5(dataOut, w1);

endmodule

module wave_sram;
wire dataOut;
reg address, dataIn, write;

//make the sram a submodule and define the interconnections
sram cell(dataOut, address, dataIn, write);

//define the waveform to drive the circuit
parameter d = 100;

Example (continued)
initial
begin

#d dis;
#d address = 1;
#d dis;
#d dataIn = 1;
#d dis;
#d write = 1;
#d dis;
#d write = 0;
#d dis;
#d write = 'bx;
#d dis;
#d address = 'bx;
#d dis;
#d address = 1;
#d dis;
#d write = 0;
#d dis;

end

task dis; //display the circuit state
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begin
$display($time,,
"addr=%v d_In=%v write=%v d_out=%v",

address, dataIn, write, dataOut,
" (134)=%b%b%b", cell.w1, cell.w3, cell.w4,
" w134=%v %v %v", cell.w1, cell.w3, cell.w4);

endtask
endmodule

Example 17-2. Bidirectional transistors and modeling with strengths – a
static ram cell.

17.4 Strength-Levels in Verilog

17.4.1 Overview

Verilog supports eight levels of strength with the following names:
• supply
• strong
• pull
• large
• weak
• medium
• small
• highz

Rule – When multiple drivers are connected, resulting value and strength is
determined by combining these together using strength algebra. The higher strength
signal wins over the lower level strengths. In the prior example, pull and strong
signals are combined to resolve.

17.4.2 Examples of Strength Algebra

Pull0 + Strong1 = Strong1

Pull1 + Strong0 = Strong0

Weak1 + Weak0 = Weak X

WeakX + Pull0= Pull0

Strengths can also be represented by numbers.
7 through 0 for supply to highz.
X Signals may have differing components in them e.g., 35X
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17.4.3 Strength Specifications On Gates

Strength specifications can be added onto gates, e.g., (pull0, highz1) buf (out, in);
This allows adding strength information at the gate level. This is also useful for

switch-models intermixed with gates as is commonly used while modeling at the
structural level.

17.5 Exercises

1. For the algebra of strengths, provide the results of connected drivers with the
following values.

i) Pu1 Pu 0
ii) Pu1 St0
iii) 53X St1
iv) 66X St1

2. Give the output of the simulation of following model that uses switch models in
example in section 17.2 with a different test module as below:

module NewTestShReg;
wire shiftout; //net to receive circuit output value
reg shiftin; //register to drive value into circuit
reg   phase1,phase2; //clock driving values

parameter d = 100; //define the waveform time step

shreg cct (shiftout, shiftin, phase1, phase2);

initial
begin :main

shiftin = 0;//initialize waveform input stimulus
phase1 = 0;
phase2 = 0;
$monitor("time=%d wa1=%d wb1=%d wa2=%d wb2 = %d wa3=%d out =

%d\n",
cct.wa1, cct.wb1, cct.wa2, cct.wb2,
cct.wa3, cctout);

// setup the monitoring information
repeat(2) //shift data in

begin
#d phase1 = 0; //time step defined by parameter d
#d phase1 = 1;
#d phase1 = 0;
#d phase2 = 0;
#d phase2 = 1;
#d phase2 = 0;

end
end

endmodule



18 STANDARD DELAY

FORMAT

18.1 Introduction

Standard Delay Format (SDF) is a file specification that assures consistent, accurate,
and up-to-date data for timing. The EDA tools can use data created by other tools as
input to their own processes via SDF. Sharing data in this way, layout tools can use
design constraints identified during timing analysis, and simulation tools can use the
post-layout delay data. The EDA tools create, read (to update their design), and write
to SDF files.

SDF files support hierarchical timing annotation. A design hierarchy might
include several different ASICs (and/or cells or blocks within ASICs), each with its
own SDF file.

SDF contains constructs for the description of computed timing data for back-
annotation and the specification of timing constraints for forward annotation. There
is no restriction on using both sets of constructs in the same file, although these are
typically different functions and are present in different files as such. Indeed, some
design synthesis tools (such as floorplanning) may need access to computed timing
data as well as the timing constraints they are intended to meet. In Figure 1-3, the
step in which gate-level netlist with back annotated delays is generated after layout.
This is commonly done via SDF files which are generated by the SDF generator that
reads layout data as well as the library data, computes the delays and puts it out in
the SDF form. The forward annotator can be seen in Figure 12-2, the time and area
constraints used in the step in logic synthesis can be in SDF format. Similarly, the
examples in Chapter 15 on specify blocks where there are pin to pin delay
specifications as well as timing checks can be generated from an SDF file by SDF
annotator (reader).
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SDF includes constructs for describing the intended timing environment in which
a design will operate. For example, you can specify the waveform to be applied at
clock inputs and the arrival time of primary inputs.

A delay calculator tool is responsible for generating the delays in the SDF file. It
will examine the specific design for which it has been instructed to calculate timing
data. The delay calculator must locate, within the design, each region for which a
timing model exists and calculate values for the parameters of that timing model.
Strategies for doing this vary from technology to technology, but an example would
be the location of each occurrence of a physical primitive from an ASIC library and
the calculation of its timing properties at its boundary (pin-to-pin timing).
Knowledge of the timing models may be obtained by accessing them directly (not
shown) or may be built into the delay calculator and/or cell characterization data.

As the timing characteristics of ASICs are strongly influenced by interconnect
effects, the figure shows the delay calculator using estimation rules (pre-layout) or
actual interconnect data (post-layout). Thus, SDF is suitable for both pre-layout and
post-layout application.

The SDF file is brought into the analysis tool through SDF annotator. The
annotator matches data in the SDF file with the design description and the timing
models. Each module in the design identified in the SDF file must be located and its
timing model found. Data in the SDF file for this module must be applied to the
appropriate parameters of the timing model.

An annotator may be a part of the tool whereby using access routines or VPI
routines it will traverse the compiled Verilog design and match the SDF
representation with the design and then generate delays and timing checks as a part
of last phase of design compilation. Alternatively, the annotator may operate
independently of the analysis tool and convert the data in the SDF file into a format
suitable for the tool to read directly. The naming of design objects must be identical
in the SDF file and design description. During annotation, inconsistencies between
the SDF file and the design description are considered errors.

In addition to the back-annotation of timing data for analysis, SDF supports the
forward-annotation of timing constraints and timing checks to design synthesis tools.
(Here, we use the term "synthesis" in its broad sense of construction, thus including
not only logic synthesis, but floorplanning, layout and routing.) Timing constraints
are "requirements" for the design's overall timing properties, often modified and
broken down by previous steps in the design process.

For example, the initial requirement might be that the primary clock should run at
50MHz. A static timing analysis of the design might identify the critical paths and
the available "slack" time on these paths and pass constraints for these paths to the
floorplanning, layout and routing (physical synthesis) tools so that the final design is
not degraded beyond the requirement. Alternatively, if after layout and routing, the
requirement cannot be met, constraints for the problem paths might be constructed
and passed back to a logic synthesis tool so that it can "try again" and leave more
slack for physical synthesis.

Constraints may also be originated by an analysis tool alone. Consider a
synchronous system in which the clock distribution system is to be synthesized. A
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static timing analysis may be able to determine the maximum permissible skew over
the distribution network and provide this as a constraint to clock synthesis. In turn,
this tool may break down the skew constraint into individual path constraints and
forward this to physical synthesis.

Note: The term "timing constraint" is also in use to describe what in SDF are
called timing checks. When viewed as statements of the form "this condition
must be met or the circuit won't work", they are indeed the same. Perhaps
the only distinction is that timing checks are applied to an analysis tool,
which is only in a position to check to see if they are met and indicate a
violation if they are not, whereas constraints are applied to a synthesis tool,
which may adapt its operation to ensure that the specified condition is met.

Timing Models and Delays Supported by SDF

SDF supports both a pin-to-pin and a distributed delay modeling style.
A pin-to-pin modeling style is generally one in which each physical cell in an

ASIC library has its timing properties described at its boundary, i.e. with direct
reference only to the ports of the cell. The timing model is frequently distinct from
the functional part of the model and has the appearance of a "shell", intercepting
transitions entering and leaving the functional model and applying appropriate
delays to output transitions. The SDF IOPATH construct is intended to apply delay
data to input-to output path delays across cells described in this way. The COND
construct allows any path delay to be made conditional, that is, its value applies only
when the specified condition is true. This allows for state-dependency of path delays
where the path appears more than once in the timing model with conditions to
identify the circuit state when it applies.

A distributed modeling style is generally one in which the timing properties of the
cell are embedded in the description of the cell as a network of modeling primitives.
The primitives provided by analysis tools such as simulators and timing analyzers
usually have simple timing capabilities built into them, such as the ability to delay an
output signal transition. The delay properties of the cell are constructed by the
careful arrangement of modeling primitives and their delays. The SDF DEVICE
construct is intended to apply delay data to modeling primitives in distributed delay
models.

SDF supports the specification of how short pulses propagate to the output of a
cell described using a pin-to-pin delay model. A limit can be established for the
shortest pulse that will affect the output and a larger limit can be established for the
shortest pulse that will appear with its true logical value, rather than appearing as a
"glitch" to the unknown state. The SDF PATHPULSE construct allows these limits
to be specified as time values. The SDF PATHPULSEPERCENT construct allows
these limits to be specified as percentages of the path delay.

Timing Checks in SDF

SDF supports setup, hold, recovery, removal, maximum skew, minimum pulse width,
minimum period and no-change timing checks. Library models can specify timing
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checks with respect to both external ports and internal signals. Negative values are
permitted on timing checks where this is meaningful, although analysis tools that
cannot use negative values may substitute a value of zero. The SDF COND construct
allows conditional timing checks to be specified.

Interconnects

SDF supports two styles of interconnect delay modeling. The SDF
INTERCONNECT construct allows interconnect delays to be specified on a point-to-
point basis. This is the most general method of specifying interconnect delay.

The SDF PORT construct allows interconnect delays to be specified as equivalent
delays occurring at cell input ports. This results in no loss of generality for wires/nets
that have only one driver. However, for nets with more than one driver, it will not be
possible to represent the exact delay over each driving-output-to-driven-input path
using this construct. Note that for timing checks to operate correctly when
interconnect is modeled in this way, the timing models must be constructed to apply
the delay to the signal at input ports before they arrive at the timing checks.

SDF allows ports to be specified which are neither external connections of an
ASIC library physical primitive nor connections between levels in the design
hierarchy. Such "internal nodes" may have no corresponding terminal or net in the
physical design but may instead be artifacts of the way the timing and/or functional
model is constructed. For specific tools, the use of internal nodes can increase the
flexibility and accuracy of the models. However, because the annotator must be able
to match data in the SDF file to the models, SDF files referencing internal nodes will
not be portable to tools that do not share the same concept of internal nodes or have
models constructed without or with different internal nodes.

18.2 SDF Description

18.2.1 Introduction

This chapter describes the standard delay format. For each part of the format, the
purpose is discussed, the syntax is specified and an example is presented. A
complete, formal definition of the file syntax is contained in Appendix F. SDF files
are ASCII text files. Every SDF file contains a header section followed by one or
more cell entries. This is in essence an extension to the Specify blocks. Historically,
specify blocks were implemented with a fast algorithm at the structure level and
some limitations were put in the specification for this. As the timing specifications
needed extensions from both design perspective and the tool perspective, a new
format SDF was developed. It is possible to extend the Specify blocks to completely
support SDF within a normal Verilog HDL.

18.2.2 Syntax

delay_file ::= (DELAYFILE sdf_header cell+)
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18.2.3 Example

(DELAYFILE
(SDFVERSION "3.0") (DESIGN "BIGCHIP")  (DATE "March 12, 1995 09:46")
(VENDOR "Southwestern ASIC") (PROGRAM "Fast program") (VERSION "1.2a")
(DIVIDER /) (VOLTAGE 5.5:5.0:4.5) (PROCESS "best:nom:worst")
(TEMPERATURE -40:25:125) (TIMESCALE 100 ps) (CELL (CELLTYPE "BIGCHIP")
(INSTANCE top) (DELAY (ABSOLUTE (INTERCONNECT mck b/c/clk (.6:.7:.9))
(INTERCONNECT d[0] b/c/d (.4:.5:.6)) ) ) ) (CELL (CELLTYPE "AND2") (INSTANCE
top/b/d) (DELAY (ABSOLUTE (IOPATH a y (1.5:2.5:3.4) (2.5:3.6:4.7)) (IOPATH b y
(1.4:2.3:3.2) (2.3:3.4:4.3)) ) ) ) (CELL (CELLTYPE "DFF") (INSTANCE top/b/c) (DELAY
(ABSOLUTE (IOPATH (posedge clk) q (2:3:4) (5:6:7)) (PORT clr (2:3:4) (5:6:7)) ) )
(TIMINGCHECK (SETUPHOLD d (posedge clk) (3:4:5) (-1:-1:-1)) (WIDTH clk
(4.4:7.5:11.3)) ) ) (CELL ...) )

18.3 Header

18.3.1 Introduction

The header section of an SDF file contains information that relates to the file as a
whole. Except for the SDF version, entries are optional, so that, in fact, it is possible
to omit most of the header section. The syntax defines a strict order for header
entries and those that are present must follow this order.

Most entries are for documentation purposes and do not affect the meaning of the
data in the rest of the file. However, the SDF version, hierarchy divider and time
scale entries will, if present, change the way in which the file is interpreted.

18.3.2 Syntax

sdf_header ::= sdf_version design_name?
date? vendor? program_name? program_version? hierarchy_divider? voltage?
process? temperature? time_scale?

18.4 Header SubParts

1.

2.

VERSION

Syntax

sdf-version ::= ( SDFVERSION QSTRING )
QSTRING must be one of "1.0", "2.0", "2.1" or "3.0".

Example

(SDFVERSION "OVI 3.0")

DESIGN NAME

The design name entry allows you to record in the SDF file the name of the
design to which the timing data in the file applies. It is for documentation
purposes and does not affect the meaning of the data in the file.
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Syntax

design_name ::= (DESIGN QSTRING)

QSTRING is a name that identifies the design. Although this entry is not used
by the annotator, it is recommended that, if it is included, it should be the name
given to the top level of the design description. This is analogous to the
CELLTYPE entry, and, in fact, the same name would be used in a cell entry for
the entire design (for example, to carry all interconnect delay data). It should not
be the instance name of the design in a test-bench; this would rather be used as
part of the cell instance path in the INSTANCE entries for all cells.

3.

4.

5.

6.

THE DATE ENTRY

Syntax

date ::= ( DATE DateString )

Example

(DATE "Friday, September 17, 1993 - 7:30 p.m.")

THE VENDOR ENTRY

Syntax

vendor ::= ( VENDOR VEndorName )

Example

(VENDOR "Acme Semiconductor")

THE PROGRAM NAME ENTRY

This allows you to record in the SDF file the name of the program that created
the file. It is for documentation purposes and does not affect the meaning of the
data in the file.

Syntax

program_name ::= ( PROGRAM ProgramNAme )

Example

(PROGRAM "timcalc")

The program version entry allows you to record in the SDF file the version of the
program that created the file. It is for documentation purposes and does not
affect the meaning of the data in the file.

PROGRAM_VERSION

Syntax

program_version
::=( VERSION QSTRING )
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QSTRING is a character string, in double quotes, containing the program
version number used to generate the SDF file.

Example

(VERSION "version 1.3")

The hierarchy divider entry specifies which of the two permissible characters are
used in the file to separate elements of a hierarchical path.

7.

8.

9.

HIERARCHY DIVIDER

Syntax

hierarchy_divider
::= ( DIVIDER HCHAR )

HCHAR is either a period (.), or a slash (/).
It should not be in quotes.

Example

(DIVIDER /) ... (INSTANCE
a/b/c) . . .

In this example, the hierarchy divider is specified to be the slash (/) character
and hierarchical paths use / (rather than .) to separate elements.

If the SDF file does not contain a hierarchy divider entry then the default
hierarchy divider is the period (.). See also the descriptions of IDENTIFIER and
PATH in "Syntax Conventions."

THE VOLTAGE ENTRY

Syntax

voltage ::= ( VOLTAGE rtriple ) ||= ( VOLTAGE RNUMBER )
rtriple or RNUMBER indicates the operating voltage (in volts) at which the design
timing was calculated or the constraints are to apply.

Example

(VOLTAGE 5.5:5.0:4.5)

THE PROCESS ENTRY

The process entry allows you to record in the SDF file the process factor for
which the data in the file was computed. It is for documentation purposes and
does not affect the meaning of the data in the file.

Syntax

process ::= ( PROCESS QSTRING )

QSTRING is a character string, in double quotes, which specifies the process
operating envelope.
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Example

(PROCESS "best=0.65:nom=l.0:worst=l.8")

10.

11.

THE TEMPERATURE ENTRY

The temperature entry allows you to record in the SDF file the operating
temperature for which the data in the file was computed.

Syntax

temperature:  ::= ( TEMPERATURE    rtriple) ||=

rtriple or RNUMBER indicates the operating
ambient temperature(s) of the design in degrees Celsius (centigrade).

Example

(TEMPERATURE  -25.0:25.0:85.0)

THE TIMESCALE ENTRY

The timescale entry allows you to specify the units which you are using for all
time values in the SDF file.

Syntax

time_scale ::= (  TIMESCALE TSVALUE )

TSVALUE is a number followed by a unit. The number can be 1, 10, 100, 1.0,
10.0 or 100.0. The unit can be us, ns or ps representing microseconds,
nanoseconds and picoseconds, respectively. A space may optionally separate the
number and the unit. TSVALUE should not be in quotes.

Example

(TIMESCALE 100 ps) . . . (IOPATH (posedge clk) q (2:3:4) (5:6:7)) . . .

This example indicates that all time values in the file are to be multiplied by 100
picoseconds. Thus, the values supplied in the IOPATH entry are
(0.2ns:0.3ns:0.4ns) and (0.5ns:0.6ns:0.7ns). If the SDF file does not contain a
timescale entry then all time values in the file will be assumed to be in
nanoseconds. This has the same effect as a timescale entry of 1ns.

18.5 Cell Entry

A cell entry identifies a particular "region" or "scope" within a design and contains
timing data to be applied there. For example, a cell entry might identify an unique
occurrence of an ASIC physical primitive, such as a 2- input NAND gate, in the
design and provide values for its timing properties, such as the input-to-output path
delays. As well as identifying such design-specific regions, cell entries can identify

( TEMPERATURE RNUMBER)
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all occurrences of a particular ASIC library physical primitive, such as a certain type
of gate or flip-flop. Data is applied to all such library-specific regions in the design.

Syntax

cell ::= ( CELL celltype cell_instance, timing_spec* )

The celltype and cell_instance fields identify a region of the design. The
timing_spec field contains the timing data. These will be discussed in detail below.

Example

(CELL (CELLTYPE "DFF") (INSTANCE a/b/c) (DELAY (ABSOLUTE (IOPATH (posedge
clk) q (2:3:4)(5:6:7) ) ) ) )

An SDF file may contain any number of cell entries (other than zero) in any
order. The order of the cell entries is significant only if they have overlapping effect,
in other words, if data from two different cell entries applies to the same timing
property in the design. In this situation, the cell entries are processed from the
beginning of the file towards the end and the data they contain is applied in sequence
to whatever region is appropriate to that cell entry. Where data is applied to a timing
property previously referenced by the same SDF file, the new data will be applied
over the old and the final value will be the cumulative effect, whether the data is
applied as a replacement for the old value (absolute delays and timing checks) or is
added to it (incremental delays).

18.5.1 The CELLTYPE entry.

This indicates the name of the cell.

Syntax

celltype ::= ( CELLTYPE CellNAme )

Example

(CELLTYPE "flop")
(CELLTYPE "and")
(CELLTYPE "main")

In the first example, the cell entry identifies an occurrence of a cell which has the
name "DFF" (perhaps a D-type flip-flop).

In this example, the cell entry identifies a "buf ' modeling primitive in an analysis
tool, perhaps a buf "gate" in a Verilog model.

18.5.2 The Cell Instance Entry

This identifies the region or scope of the design for which the cell entry contains
timing data. The name by which this region is known in the design must be
consistent with the CELLTYPE entry for the cell. If the annotator locates the region
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and finds that its name does not match the CELLTYPE entry, it should indicate an
error.

Syntax

cell_instance ::= ( INSTANCE PATH? ) ||= ( INSTANCE WILDCARD )
WILDCARD ::= * // the asterisk character

The first form of the cell instance entry identifies an unique occurrence in the
design of the region named in the cell type entry. If, for example, the cell is a
physical primitive from an ASIC library, then a single occurrence of that cell on the
chip will be identified. To do this, the cell instance entry Cell Entry provides a
complete path through the design hierarchy to the cell or region of interest.

Example

(CELL (CELLTYPE "DFF") (INSTANCE al.bl.cl) . . .)

The timing data in the timing specifications of this cell entry apply only to the
identified region of the design. If you do not specify PATH, i.e. you leave it blank,
the default is the region (hierarchical level) in the design at which the annotator is
instructed to apply the SDF file (see "The Annotator" page 3 in chapter 2). This can
be useful for gathering all interconnect information into a top-level cell entry.

The second form of the cell instance entry can be used to associate timing data
with all occurrences of the specified cell type. Instead of a hierarchical path, specify
the wildcard character (*) after the INSTANCE keyword, as shown below.

Example

(CELL (CELLTYPE "DFF") (INSTANCE *))

18.6 Timing Specifications

There are three types of timing specifications that are identified by the DELAY,
TIMINGCHECK, and TIMINGENV keywords.

Syntax

timing_spec ::= del_spec ||= tc_spec ||= te_spec
del_spec ::= ( DELAY deltype+ )
tc_spec ::= ( TIMINGCHECK tchk_def+ )
te_spec ::= ( TIMINGENV te_def+ )

Timing specifications that start with the DELAY keyword associate delay values
with input-to-output paths, input ports, interconnects, and device outputs. They can
also provide narrow-pulse propagation data for input to-output paths.

Syntax

del_spec::= ( DELAY deltype+)
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18.6.1 Delay Type – Absolute

The ABSOLUTE keyword introduces delay data that replaces existing delay values
in the design during annotation.

Any number of deltype entries may appear in a del_spec entry. Each deltype will
be a PATHPULSE or PATHPULSEPERCENT entry, specifying how pulses will
propagate across paths in this cell, or ABSOLUTE or INCREMENT delay definition
entries, containing delay values to be applied to the region identified by the cell.

Syntax

deltype::= ( ABSOLUTE del_def+ )
||=  ( INCREMENT del_def+ )
||=  ( PATHPULSE input_output_path? valuevalue? )

||= ( PATHPULSEPERCENT input_ouput_path? value value? )

Example

(CELL (CELLTYPE "DFF") (INSTANCE a.b.c) (DELAY (ABSOLUTE (IOPATH (posedge
clk) q (22:28:33) (25:30:37)) (PORT clr (32:39:49) (35:41:47)) ) ))

Negative delay values can be specified for absolute delays to accommodate certain
styles of ASIC cell characterization. However, note that not all analysis tools will be
able to make sense of negative delays and some may set them to zero.

18.6.2 The INCREMENT keyword

The INCREMENT keyword introduces delay data that is added to existing delay
values in the design during annotation.

Syntax

(INCREMENT del_def+ )

The delay definition entries, del_def, contain the actual data and describe where it
belongs in the design. The same delay definition constructs are used for increment
and absolute delays.

Example

(CELL (CELLTYPE "DFF") (INSTANCE a.b.c) (DELAY (INCREMENT (IOPATH (posedge
clk) q (-4::2) (-7::5)) (PORT clr (2:3:4) (5:6:7))) ) )

Negative delay values can be specified for increment delays, in which case, of
course, the value existing in the design will be reduced. For negative delays, note
that not all analysis tools will be able to make sense of negative delays and may set
them to zero.

Both absolute and increment delays are described by the same group of delay
definition constructs.
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18.6.3 The PATHPULSE Entry

The PATHPULSE entry represents narrow-pulse propagation limits associated with a
legal path between an input port and an output port of a device. These limits
determine whether a pulse of a certain width can pass through the device and appear
at the output.

Syntax

( PATHPULSE input_output_path? value value? )
input_output_path ::= port_instance port_instance

The first port_instance of input_output_path is an input or a bidirectional port.
The second port_instance of input_ouput_path is an output or a bidirectional port.
If input_output_path is omitted, then the data supplied refers to all input to-output

paths in the region identified by the cell entry. The annotator must locate all paths
that are able to model narrow-pulse propagation in the applicable timing model and
apply the supplied data. The first value, in time units, is the pulse rejection limit.
This limit defines the narrowest pulse that can appear at the output port of the
specified path. Any narrower pulse does not appear at the output.

The second value, in time units, is the X limit. This limit defines the minimum
pulse width necessary to drive the output of the specified path to a known state; a
narrower pulse causes the output to enter the unknown (X) state or is rejected (if
smaller than the pulse rejection limit). Note that the X limit must be greater than the
pulse rejection limit to carry any significance.

If you specify only one value, both limits are set to that value. In all cases value
can be either a single number or a triple, but must not be negative.

Example

(INSTANCE x) (DELAY (PATHPULSE il ol (13) (21)) )

In this example of a simple buffer cell, the pulse rejection limit is specified as 13
time units and the X limit is specified as 21 time units. It is assumed that the high-
to-low and low-to-high delays from i1 to ol are the same. The first pulse, being
shorter than 13, is rejected. The second pulse, being at least 13, but shorter than 21,
appears at the output as an X. The third pulse, being at least 21, is passed to the
output.

When narrow pulses arrive at an output due to changes at different inputs (rather
than two changes at the same input, as in the above example), the two paths from the
inputs to the output may have different limits. The assumption made in SDF is that
the analysis tool will use the data for the path that terminated the pulse to control the
pulse's appearance at the output.

Example

(INSTANCE x) (DELAY (ABSOLUTE
(IOPATH a y (45) (37)) (IOPATH b y (43) (35)) ) (PATHPULSE a y (13)
(24)) (PATHPULSE b y (15) (21)) )
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Note that the order in which the inputs changed is of no consequence; pulse
propagation is controlled by the data associated with the path through which the
transition propagates that ends the output pulse.

If a path has not been given data for its pulse rejection or X limits, then the
analysis tool assumes a pulse rejection limit and an X limit equal to the path delay.
Thus, if this path terminates a narrow pulse, the pulse will be rejected if it is shorter
than the path delay or otherwise passed.

18.6.4 The PATHPULSEPERCENT Entry

This is the same as PATHPULSE but the values are expressed as a percentage (%) of
the cell path delay from the input to the output.

Syntax

(PATHPULSEPERCENT input_output_path? value value? )

Neither value should be greater than 100.0. To have any effect, the second value
(X limit) must be greater than the first value (pulse rejection limit).

Example

(INSTANCE x) (DELAY (ABSOLUTE (IOPATH a y (45) (37)) ) (PATHPULSEPERCENT a
y (25) (35)) )

In this example, the pulse rejection limit is specified as 25% of the delay time
from a to y and the X limit is specified as 35% of this delay. If more than one delval
is specified in the delval-list of an IOPATH entry, the analysis tool selects that
corresponding to the transition than ended the pulse. So, for a high-going output
pulse, which ends with a high-to-low transition, the percentages are applied to the
high-to-low delay of the path. In the above example, where the high-to-low delay is
37, the pulse rejection limit is 25% of 37 and the X limit is 35% of 37. The data used
for pulse control comes from the path that caused the pulse to terminate (in the same
way as for the PATHPULSE construct).

Note that if the analysis tool is able to model narrow-pulse propagation with
different limits for each output transition, the tool can pre-compute the limit values
from the percentages and path delay values. The annotator, however, cannot do this
as new values for path delays may be supplied after the PATHPULSEPERCENT
entry is processed.

18.7 Delay Definitions

Syntax

del_def ::= ( IOPATH port_spec port_instance( RETAIN delval-list )* delval-list)
||= (COND QSTRING? conditional_port_expr (IOPATH port_spec port_instance (

RETAIN
delval_list )* delval_list))
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||= ( CONDELSE ( IOPATH port_spec port_instance (RETAIN delval_list)*
delval_list))

||= (_PORT port_instance delval_list) ||= ( INTERCONNECT
port_instance port_instance delval_list ) ||= ( DEVICE port_instance?

delval-list)

In the syntax descriptions above, you will see that each construct uses delval-list
to specify the operating values to be applied. The section "Data Values" on page 4-7
provides a formal definition of delval-list along with related syntax constructs.
However, here we discuss delval_list in the context of specifying delay and pulse
control data for the various delay constructs in SDF.

18.7.1 The Delay Data

This data in each delay definition entry is specified in a list of delvals.

Syntax

delval_list
::= delval ||= delval delval ||= delval delval delval ||= delval delval
delval delval delval? delval? ||= delval delval delval delval delval
delval delval delval? delval? delval? delval? delval?

The number of delvals in the delval_list can be one, two, three, six or twelve.
Note, however, that the amount of data you include in a delay definition entry must
be consistent with the analysis tool’s ability to model that kind of delay. For example,
if the modeling primitives of a particular tool can accept only three delay values,
perhaps rising, falling and "Z" transitions, you should not attempt to annotate
different values for 0*1 and Z*l transitions or for 1*Z and 0*Z transitions. It is
recommended that in such situations annotators combine the information given in
some documented manner and issue a warning.

The following paragraphs define the semantics of delval_lists of various lengths:

If twelve delvals are specified in delval_list, then each corresponds, in sequence,
to the delay value applicable when the port (for IOPATH and
INTERCONNECT, the output port) makes the following transitions:

0*1,1*0,0*Z, Z*l, 1*Z, Z*0,0*X,X*l, 1*X, X*0, X*Z, Z*X

If fewer than twelve delvals are specified in delval_list, then the table below
shows how the delays for each transition of the port are found from the values
given.

If only two delvals are specified, the first ("rising") is denoted in the table by 01
and the second ("falling") by 10.

If three delvals are specified, the first and second are denoted as before and the
third, the "Z" transition value, by -Z.

If six delvals are specified, they are denoted, in sequence, by 01, 10, 0Z, Zl, 1Z
and Z0.

1.

2.

3.

4.

5.
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6. If a single delval is specified, it applies to all twelve possible transitions. This is
not shown in the table.

In a delval_list, any delvals can be null, that is, the parentheses enclosing the
RNUMBER or rtriple are empty (see "Data Values" on page 4-7). The meaning of
this is the same as missing numbers in an rtriple: no data is supplied and values
should not be changed by the annotator. Such null delvals act as "placeholders" to
allow you to specify delvals further down the list.

Example

(IOPATH i3 ol () () (2:4:5) (4:5:6) (2:4:5) (4:5:6))

In this example, 0*1 and 1*0 delay values are not specified and might not even be
present in the timing model. A delval-list consisting of nothing but null delvals is
permitted by the syntax and has no effect.

0*1 1*0 0*Z
Z*l 1*Z Z*00*X X*1 1*X X*OX*Z Z*X

01 10-Z 01-Z10 min(01,-Z)
01 min(l0,-Z) 10-Zmin(01,10)

01 10 01 01 10 10 01 01 10 10 max(01,10)
min(01,10)

01 10 0ZZl 1ZZ0 min(01,0Z) max(01,Zl) min(10,lZ) max(10,Z0)
max(0Z,lZ) min(Z0,Zl)

Transition 236 Number of delvals in delval_list.

18.7.2 Delay Value

In delval_lists of length six and twelve, it is permissible to omit trailing null delvals.
Thus, a list of four delvals, for example, provides data for the 0*1, 1*0, 0*Z and Z*l
transitions, but not for the 1*Z, Z*0 transitions. Note that omitting three delvals is
going too far as a mapping is defined above for an delval_list of three delvals onto all
six transitions. Each delval is either an rvalue or a group of two or three rvalues
enclosed in parentheses.

Syntax

delval ::= rvalue ||= (rvalue rvalue) ||=
(rvalue rvalue rvalue)
rvalue ::= ( RNUMBER? ) ||= (rtriple? )

When a single rvalue is used, it specifies the delay value. When two rvalues in
parentheses are used, the first rvalue specifies the delay, as if a single rvalue were
given. The second specifies both the pulse rejection limit, or "r-limit", associated
with this delay, and the X-limit, or "e-limit". When three rvalues are used, the first
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specifies the delay, the second specifies the pulse rejection limit, or "r-limit", and the
third specifies the X-limit, or "e-limit". This allows pulse control data to be
associated in a uniform way with all types of delays in SDR Note that since any
rvalue can be an empty pair of parentheses, each type of delay data can be annotated
or omitted as the need arises. Each rvalue is either a single RNUMBER or an rtriple,
containing three RNUMBERs separated by colons, in parentheses.

The use of single RNUMBERs and rtriples should not be mixed in the same SDF
file. All RNUMBERs can have negative, zero or positive values.

The use of triples in SDF allows you to carry three sets of data in the same file.
Each number in the triple is an alternative value for the data and is typically selected
from the triple by the annotator or analysis tool on an instruction from the user. The
prevailing use of the three numbers is to represent minimum, typical and maximum
values computed at three process/operating conditions for the entire design. Any one
or any two (but not all three) of the numbers in a triple may be omitted if the
separating colons are left in place. This indicates that no value has been computed
for that data, and the annotator should not make any changes if that number is
selected from the triple. For absolute delays, this is not the same as entering a value
of 0.0.

The following sections describe delay definition entries.

18.7.3 The IOPATH Entry

The IOPATH entry represents the delays on a legal path from an input/ bidirectional
port to an output/bidirectional port of a device. Each delay value is associated with a
unique input port/output port pair.

Syntax

(IOPATH port_spec port_instance delval-list)
port_spec is an input or a bidirectional port and can have an edge identifier.
port_instance is an output or a bidirectional port. It cannot have an edge identifier.

Delay data for the different transitions at the path output port are conveyed by
supplying an ordered list of values as described above. delval_list is the IOPATH
delay data from port_spec to port_instance.

If the timing model includes conditions (state dependency) for the path delay
between the two specified ports, the specified delval is still applied. If the model
includes more than one delay path, each distinguished by its conditions, then the data
applies to all of them. This has the same effect as specifying all paths (using the
COND or CONDELSE keyword with IOPATH as described below) with the same
IOPATH delay delval_list.

Example

(INSTANCE x.y.z) (DELAY (ABSOLUTE (IOPATH (posedge il) ol (2:3:4) (4:5:6))
(IOPATH i2 ol (2:4:5) (5:6:7)) (IOPATH i3 ol () () (2:4:5) (4:5:6) (2:4:5) (4:5:6)) ) )
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18.7.4 Conditionals

The COND keyword allows the specification of conditional (state dependent) input-
to-output path delays.

Syntax

(COND QSTRING? conditional_port_expr (IOPATH port_spec port_instance delval_list))

QSTRING is an optional symbolic name that can stand in for the expression itself
for annotators that operate by matching named placeholders in the model to SDF
constructs. See "Condition Labels", below, for a full explanation.

conditional_port_expr is the description of the state dependency of the path delay.
The syntax of conditional_port_expr is shown in "Conditions for Path Delays" on
page 4-9. The perceptive reader will notice that this expression evaluates to a logical
signal, rather than a boolean. The intent is that the analysis tool should treat a
logical zero as FALSE and any other logical value (1, X or Z) as TRUE and that a
particular conditional path delay in the timing model is used only if the condition is
TRUE.

port_instance and delval_list have exactly the same meaning as in IOPATH
entries without the COND keyword as described above, except that the annotator
must locate a path delay with a condition matching the one specified and apply the
data only to that. Other path delays from the same input port to the same output port
but with different conditions in the timing model will not receive the data.
Annotators may differ in their capabilities to match a condition in SDF to conditions
in the timing model. Where the analysis tool uses the same syntax as SDF (derived
from the Verilog language), the annotator may require an exact character-for
character match in the string representations of the conditions.

Example

The CONDELSE keyword allows the specification of default delays for
conditional paths. The default delay is the delay that will be in force if, during the
simulation or analysis, none of the conditions specified for the path in the model are
TRUE but a signal must still be propagated over the path.

Syntax

(CONDELSE (IOPATH
port_spec port_instance delval_list))

This construct should be used only where the cell timing model includes an
explicit mechanism for providing default delays. The annotator should match this
SDF construct to such a mechanism in the model. It should not attempt to locate
conditions for the path which have not been specified in COND constructs.

(INSTANCE x) (DELAY (ABSOLUTE (COND b (IOPATH a y (0.21) (0.54) ) ) (COND ~b
(IOPATH a y (0.27) (0.34) ) ) (COND a (IOPATH b y (0.42) (0.44) ) ) (COND ~a (IOPATH b
y (0.37) (0.45) ) ) ) )
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Annotators may operate by mapping constructs in the SDF file into symbolic
names, locating placeholders with those names in the models and applying values
from the SDF file to the variables associated with those placeholders. (An example of
this is the annotator for VITAL models in a VHDL simulator.) To ease the problem
of mapping a conditional_port_expr construct (or the timing_check_condition
construct in timing checks, later) into symbolic names, these can optionally be
preceded by a QSTRING.

Clearly, for a tool that uses a name mapping annotation scheme, models must be
constructed so as to contain the correct placeholders. Therefore, the mapping
algorithm of the tool's annotator must be clearly documented and available to users.
The description of the mapping must include the way in which the QSTRING is used
in constructing the name. For example, it may be appended to a name constructed
from other information in the SDF file such as the type of construct, port names, etc.
The description should also explain what will happen if the QSTRING is absent in a
conditional construct and what will happen in certain timing checks where two
QSTRINGs are possible.

The intent of SDF is that the QSTRING should stand in place of the
conditional_port_expr or timing_check_condition in constructing unique placeholder
names for each state or condition in which a timing property might have a different
annotated value.

18.7.5 The RETAIN Entry

The RETAIN entry represents the time for which an output/bidirectional port will
retain its previous logic value after a change at a related input/ bidirectional port.
This is commonly used on paths from the address or select inputs to the data outputs
of memory and register file circuits.

Syntax

(IOPATH port_spec port_instance ( RETAIN delval_list )* delval-list) ( COND
QSTRING? conditional_port_expr ( IOPATH port_spec port_instance ( RETAIN
delval_list )* delval_list) ) ( CONDELSE ( IOPATH port_spec port_jnstance ( RETAIN
delval_list )* delval_list))

port_spec is an input or a bidirectional port and can have an edge identifier.
port-instance is an output or a bidirectional port. It cannot have an edge

identifier. Delay data for the different transitions at the path output port are conveyed
by supplying an ordered list of values as described above in "Specifying Delay
Values" on page 16.

delval-list is the retain time data from port_spec to port_instance.
This construct should be used only where the cell timing model includes an

explicit mechanism for providing retain times. The annotator should match this SDF
construct to such a mechanism in the model.

The delays in delval_list for consecutive RETAIN statements must be strictly
monotonically increasing.
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Example

(IOPATH addr[13:0] do[7:0]

(RETAIN (4:5:7) (5:6:9))

In this example, the retain time of the bus do[7:0] with respect to changes on the
bus addr[7:0] is described. It is assumed that the model for this cell contains path
delays from addr to do and also a modeling construct to receive the retain times
written so that after the retain time, do goes to the X state. The first delval, (4:5:7), is
the "rising" time and will be used for do going from low to X. The second delval,
(5:6:9), is the "falling" time and will be used for do going from high to X.

As with IOPATH entries, RETAIN entries can be made conditional or state
dependent by the use of the COND and CONDELSE keywords.

18.7.6 The PORT Entry

The PORT entry is for the specification of interconnect delays (actual or estimated)
that are modeled as delay at input ports. The start point for the delay path (the
driving output port) is not specified.

Syntax

(PORT port_instance delval_list)
port_instance is an input or bidirectional port.
delval_list is
the PORT delay of the port_instance.

Example

(INSTANCE c) (DELAY
(ABSOLUTE (PORT rl.a (0.01:0.02:0.03)) (PORT r2.a (0.03:0.04:0.05))
) )

Analysis tools must apply delay values obtained from SDF PORT entries before
timing checks are applied. Thus, this construct models delay in the physical
interconnect between the driver and the driven cell port.

18.7.7 The INTERCONNECT Entry

The INTERCONNECT entry is for the specification of interconnect delays (actual or
estimated) that are modeled independently for each driver-to driven path. Both start
and end points for the delay path are specified.

Syntax

(INTERCONNECT port_instance port_instance delval_list)
The first port-instance is an output or bidirectional port.
The second port_instance is an input or bidirectional port.

delval_list is the INTERCONNECT delay between the output and input ports.
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Example

Although INTERCONNECT entries are the most general way in which
interconnect delays can be expressed, some analysis tools may not be able to model
independent delay values over each driver-to-driven path on a net with more than
one driver. Such tools may map INTERCONNECT entries into equivalent input port
delays (such as would directly arise from PORT entries), sometimes losing
information in the process. Even tools which can model independent delays over
each path may do so less efficiently than input port delays. Writers of SDF files
should bear this in mind when choosing whether to use PORT entries or
INTERCONNECT entries or a combination of both to model interconnect delay.

18.7.8 The DEVICE Entry

The DEVICE entry represents the delay of all paths through a cell to the specified
output port. This construct is intended primarily for use with distributed timing
models where the cell to which it is applied is a modeling primitive. If it is used at a
higher level in the hierarchy, then the effect is to apply the delay data to all input-to-
output paths across the cell that terminate at the specified port.

Syntax

(DEVICE port_instance? delval_list)

port_instance is optional and, if present, specifies the output port to which the
delay data is to be applied. If a cell has more than one output, you can therefore
include several DEVICE entries in a single CELL entry, each indicating the desired
output port using port_instance, and attach different delay data to each output. If
port_instance is omitted, all paths to all output ports of the region identified in the
cell entry receive the same delay data.

delval-list is the delay data. The number of triples in delval-list must correspond
to the capabilities of the modeling primitives of the target analysis tool. For example,
Verilog "gates" can accept one, two, or in some cases, three delay values, but never
six or twelve.

Example

(CELL (CELLTYPE "buf") (INSTANCE rsl.nandl.bufa) (DELAY (ABSOLUTE (DEVICE
(1:3:8) (4:5:7)) ) ) ) (CELL (CELLTYPE "buf") (INSTANCE rsl.nandl.bufb) (DELAY
(ABSOLUTE (DEVICE (2:4:9) (6:8:12)) ) ) )

In this example, a 2-input NAND gate model, nan2, is constructed in a distributed
delay style from two buffer primitives, bufa and bufb, and a NAND gate primitive,
nand. Two such NAND gates, nandl and nand2, are instantiated to create a design

(INSTANCE top) (DELAY (ABSOLUTE (INTERCONNECT d1.y c.r1 .a (0.01:0.02:0.03))
(INTERCONNECT d1.y c.r2.a(0.03:0.04:0.05)) (INTERCONNECT d1.y r3.a
(0.05:0.06:0.07)) (INTERCONNECT b.d2.y c.r1 .a (0.04:0.05:0.06)) (INTERCONNECT
b.d2.y c.r2.a (0.02:0.03:0.04)) (INTERCONNECT b.d2.y r3.a (0.02:0.03:0.04)) ) )
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for an RS latch. This is then instantiated in a higher level of the design as rsl. The
SDF file demonstrates the annotation of delays to the a-to-y and b-to-y paths through
the top NAND gate. The first of these defines the input-to-output path delay from sb
to q of the RS latch; the second contributes to the rb to q delay. The delay on bufa
also contributes to the sb-to-qb delay.

Example

(CELL (CELLTYPE "rslatch") (INSTANCE rsl) (DELAY (ABSOLUTE (DEVICE q (1:3:8)
(4:5:7)) (DEVICE qb (2:4:9) (6:8:12)) ) ) )

In this example, the same RS latch is described in a pin-to-pin modeling style.
Two nand gate primitives are connected to form the functional part of the model and
all timing information is described separately in a timing model of whatever form the
analysis tool requires. Typically, this timing model would specify input-to-output
delay paths from sb to q, rb to to qb and rb to qb. The above excerpt from an SDF file
annotates values for all paths to the q and qb outputs. It will have exactly the same
effect as the following:

(CELL (CELLTYPE "rslatch") (INSTANCE rsl) (DELAY (ABSOLUTE (IOPATH sb q
(1:3:8) (4:5:7)) (IOPATH rb q (1:3:8) (4:5:7)) (IOPATH sb qb (2:4:9) (6:8:12)) (IOPATH rb qb
(2:4:9) (6:8:12)) ) ) )

18.8 Timing Check Entries

Timing specifications that start with the TIMINGCHECK keyword associate timing
check limit values with specific cell instances.

Syntax

tc_spec ::= ( TIMINGCHECK tchk_def+)

Any number of  tchk_def entries may appear in a tc_spec entry. Each tchk_def will
be a SETUP, HOLD, SETUPHOLD, RECOVERY, REMOVAL, RECREM, SKEW,
WIDTH, PERIOD or NOCHANGE timing check entry, containing timing check
limit values for this cell entry. Timing check entries specify limits in the way in
which a signal can change or two signals can change in relation to each other for
reliable circuit operation. EDA analysis tools use this information in different ways:
Simulation tools issue warnings about signal transitions that violate timing checks.
Timing analysis tools identify delay paths that might cause timing check violations
and may determine the constraints for those paths.

Syntax

tchk_def ::= ( SETUP port_tchk port_tchk value ) ||= ( HOLD port_tchk port_tchk value ) ||= (
SETUPHOLD port_tchk port_tchk rvalue rvalue ) ||= ( SETUPHOLD port_spec port_spec
rvalue rvalue scond? ccond?) ||= ( RECOVERY port_tchk port_tchk value ) ||= ( REMOVAL
port_tchk port_tchk value ) ||= ( RECREM port_tchk port_tchk rvalue rvalue ) ||= ( RECREM
port_spec port_spec rvalue rvalue scond? ccond?) ||= ( SKEW port_tchk port_tchk rvalue ) ||=
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( WIDTH port_tchk value ) ||= ( PERIOD port_tchk value ) ||= ( NOCHANGE port_tchk
port_tchk rvalue rvalue )

The COND keyword allows the specification of conditional timing checks. Its use
is rather different from the specification of conditional input-output path delays
described in "Conditional Path Delays" on page 19 in that the condition is associated
with the specification of a port rather than the entry as a whole.

Syntax

port_tchk::= port_spec ||= (COND QSTRING? timing_check_condition port_spec)

timing_check_condition is the description of the state dependency of the timing
check. The perceptive reader will notice that this expression evaluates to a logical
signal, rather than a boolean. The intent is that the analysis tool should treat a
logical zero as FALSE and any other logical value (1, X or Z) as TRUE and that a
particular conditional timing check in the timing model is used only if the condition
is TRUE.

The annotator must locate in the timing model a timing check with conditions
matching those specified. Other timing checks of the same kind but with different
conditions from the SDF entry will not receive the data. SDF timing check entries
with no conditions match any timing check in the model of the same kind and
between the ports specified in the SDF entry.

An alternative syntax is available for SETUPHOLD and RECREM timing checks.
This associates the conditions with the "stamp" and "check" events in the analysis
tool rather than the port_spec. Separate conditions can be supplied for the "stamp"
and "check" events using the SCOND and CCOND keywords. Note, SCOND or
CCOND or both SCOND and CCOND take precedence over COND.

Syntax

scond
::= (SCOND QSTRING? timing_check_condition) ccond ::= (CCOND QSTRING?
timing_check_condition)

For the setup phase of a setuphold timing check, the "stamp" condition applies to
the data port and the "check" condition to the clock or gate port. For the hold phase,
the "stamp" condition applies to the clock or gate port and the "check" condition to
the data port.

These conditions restore flexibility in expressing conditions that is lost when
SETUP and HOLD are combined into SETUPHOLD, or when RECOVERY and
REMOVAL are combined into RECREM. For example, here are separate SETUP
and HOLD statements for the same clock and data signals, but with the condition
attached to the clock in one case, and to the data in the other:

(SETUP d (COND enb clk) (5))
(HOLD (COND enb d) clk (7))
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These conditions cannot be combined into a single SETUPHOLD as shown here:

(SETUPHOLD (COND enb d) (COND enb clk) (5) (7))

This is because there is no way to specify that the condition should only apply to
signal clk for SETUP checks, and only to signal d for HOLD checks. The SCOND
and CCOND fields provide this capability. By definition, the CCOND field defines a
condition for the check event (the 2nd event):

(SETUPHOLD d clk (5) (7) (CCOND enb))

Any port_spec can be qualified with an edge identifier as follows:

Syntax
port_spec
::= port_instance ||= port_edge

port_edge ::= (EDGE-IDENTIFIER port_instance)

This will be termed an "edge specification". When the annotator is locating a
timing check at specified ports in the timing model, it must match the edge
specification as well as the port names. A port without an edge specification in SDF
matches any edge specification in the model.

Example

(CELL (CELLTYPE "DFF") (INSTANCE a.b.c) (TIMINGCHECK(SETUP din (posedge clk)
(3:4:5.5)) (HOLD din (posedge clk) (4:5.5:7))) )

This example shows a cell entry which provides values for setup and hold timing
checks with respect to the rising edge of the clock signal.

In the syntax descriptions of the timing check constructs, you will see that either
rvalue or value is used to specify the timing check limit to be applied. Although
rvalue may be negative, value must be zero or positive.

Each rvalue or value may be a single value (RNUMBER or NUMBER,
respectively) or three values separated by colons, (an rtriple or triple) representing
three sets of data for minimum, typical and maximum delay conditions. However, the
use of single RNUMBER/NUMBERs and rtriple/ triples should not be mixed in the
same SDF file.

The use of triples in SDF allows you to carry three sets of data in the same file.
Each number in the triple is an alternative value for the data and is typically selected
from the triple by the annotator or analysis tool on an instruction from the user. The
prevailing use of the three numbers is to represent minimum, typical and maximum
values computed at three process/operating conditions for the entire design. Any one
or any two (but not all three) of the numbers in a triple may be omitted if the
separating colons are left in place. This indicates that no value has been computed
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for that data, and the annotator should not make any changes if that number is
selected from the triple.

SETUPHOLD, RECREM and NOCHANGE timing checks have two rvalues, the
first for the setup limit and the second for the hold limit.

18.8.1 The SETUP Entry

The SETUP entry specifies limit values for a setup timing check.
Setup and hold timing checks are used to define a time interval during which a

"data" signal must remain stable in order for a transition of a "clock" or "gate" signal
to store the data successfully in a storage device (flip-flop or latch). The setup time
limit defines the part of the interval before the clock transition; the hold time limit
defines the part of the interval after the clock transition. Any change to the data
signal within this interval results in a timing violation. To shift the interval with
respect to the clock transition, either the setup time or the hold time can be negative;
however, their sum must always be greater than zero.

Syntax

( SETUP port_tchk port_tchk value)

The first port_tchk identifies the data port. If it includes an edge specification,
then the data is for a setup time check with respect only to the specified transition at
the data port.

The second port_tchk identifies the clock/gate port and will normally include an
edge specification to identify the active edge of the clock or the active-to-inactive
transition of the gate. value is the SETUP time limit between the data and clock ports
and must not be negative.

Example

(INSTANCE x.a) (TIMINGCHECK (SETUP din (posedge clk) (12)) )

As with all port_tchks, the COND construct can be used to specify conditions
associated with the setup timing check.

18.8.2 The HOLD Entry

The HOLD entry specifies limit values for a hold timing check.

Syntax

(HOLD port_tchk port_tchk value)
The first port_tchk identifies the data port.
The second port-tchk identifies the clock port.
value is the HOLD time between the data and clock events and must not be negative..

Example

(INSTANCE x.a) (TIMINGCHECK (HOLD din (posedge clk) (9.5))...)
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As with all port_tchks, the COND construct can be used to specify conditions
associated with the hold timing check.

18.8.3 The SETUPHOLD Entry

The SETUPHOLD entry specifies setup and hold limits in a single entry.

Syntax

(SETUPHOLD port_tchk port_tchk rvalue rvalue) (SETUPHOLD port_spec port_spec
rvalue rvalue scond? ccond?)

The first port_tchk or port_spec identifies the data port. The second port_tchk or
port_spec identifies the clock port. As with all port_tchks, the COND construct can
be used in the first form of the setuphold timing check to specify conditions
associated with the ports. The first rvalue is the setup time and the second rvalue is
the hold time. Either can be negative, however their sum must be greater than zero.
In the second syntax form, scond and ccond are the "stamp" and "check" conditions
as described above in "Conditional Timing Checks".

Example

(INSTANCE x.a) (TIMINGCHECK (SETUPHOLD (COND ~reset din) (posedge clk) (12)
(9.5)) )

This SDF entry will match setup and hold timing checks in the model that are
conditional on ~reset at the time the din port changes. At this time in the analysis
tool, -reset must evaluate to TRUE, i.e., the reset signal must be in the zero, X or Z
states, for the checks to be performed.

Example

(INSTANCE x.a) (TIMINGCHECK (SETUPHOLD din (posedge clk) (12) (9.5) (CCOND
~reset)))

This SDF entry, using the second syntax form, will match setup and hold timing
checks in the model that are conditional on -reset at the time of the "check" event.
For the setup phase of the check, this will be when the clk port undergoes a posedge
transition. For the hold phase of the check, this will be when the din port undergoes
any transition.

18.8.4 The RECOVERY Entry

The RECOVERY entry specifies limit values for recovery timing checks. A recovery
timing check is a limit of the time between the release of an asynchronous control
signal from the active state and the next active clock edge, for example between
clearbar and the clock for a flip-flop. If the active edge of the clock occurs too soon
after the release of the clearbar, the state of the flip-flop will become uncertain—it
could be the value set by the clearbar, or it could be the value clocked into the flip-
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flop from the data input. In other respects, a recovery check is similar to a setup
check.

Syntax

( RECOVERY port_tchk port_tchk value)

The first port_tchk refers to the asynchronous control signal and will normally
have an edge identifier associated with it to indicate which transition corresponds to
the release from the active state.

The second port_tchk refers to the clock (flip-flops) or gate (latches). This will
also normally have an edge identifier to indicate the active edge of the clock or the
closing edge of the gate. value is the recovery limit value and must not be negative. It
is the time it takes a device to recover after an extraordinary operation, such as set or
reset, so that it can reliably return to normal operation, such as clocking in of new
data.

Example

(INSTANCE x.b) (TIMINGCHECK (RECOVERY (posedge clearbar) (posedge clk) (11.5)))

As with all port_tchks, the COND construct can be used to specify conditions
associated with the recovery timing check.

18.8.5 The REMOVAL Entry

The REMOVAL entry specifies limit values for removal timing checks. A removal
timing check is a limit of the time between an active clock edge and the release of an
asynchronous control signal from the active state, for example between the clock and
the clearbar for a flip-flop. If the release of the clearbar occurs too soon after the
active edge of the clock, the state of the flip-flop will become uncertain—it could be
the value set by the clearbar, or it could be the value clocked into the flip-flop from
the data input. In other respects, a removal check is similar to a hold check.

Syntax

( REMOVAL port_tchk port_tchk value )

The first port_tchk refers to the asynchronous control signal and will normally
have an edge identifier associated with it to indicate which transition corresponds to
the release from the active state. The second port_tchk refers to the clock (flip-flops)
or gate (latches). This will also normally have an edge identifier to indicate the
active edge of the clock or the closing edge of the gate. value is the removal limit
value and must not be negative. It is the time for which an extraordinary operation,
such as set or reset, must persist to insure that a device will ignore any normal
operation, such as clocking in of new data.

Example

(INSTANCE x.b)
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(TIMINGCHECK (REMOVAL (posedge clearbar) (posedge clk) (6.3)))

As with all port_tchks, the COND construct can be used to specify conditions
associated with the recovery timing check.

18.8.6 The RECREM Construct

The RECREM construct specifies both recovery and removal limits in a single entry.

Syntax

( RECREM port_tchk port_tchk rvalue rvalue) (RECREM port_spec port_spec rvalue rvalue
scond? ccond? )

The first port_tchk or port_spec identifies the asynchronous control port.
The second port_tchk or port_spec identifies the clock (for flip-flops) or gate (for

latches) port.
As with all port_tchks, the COND construct can be used in the first form of the

recovery/removal timing check to specify conditions associated with the ports.
The first rvalue is the recovery time and the second rvalue is the removal time.

Either can be negative, however their sum must be greater than zero. In the second
syntax form, scond and ccond are the "stamp" and "check" conditions as described
above in "Conditional Timing Checks" on page 332.

Example

(INSTANCE x.b) (TIMINGCHECK (RECREM (posedge clearbar) (posedge clk) (1.5) (0.8)))

This example specifies a recovery time of 1.5 and a removal time of 0.8. The
recovery time limit (1.5 time units) defines the part of the interval before the clock
transition; the removal time limit (0.8 time units) defines the part of the interval after
the clock transition. Any change to the clearbar signal within this interval results in
a timing violation.

18.8.7 The SKEW Entry

The SKEW entry specifies limit values for signal skew timing checks. A signal skew
limit is the maximum allowable delay between two signals, which if exceeded causes
devices to behave unreliably.

Syntax

( SKEW port_tchk port_tchk rvalue ) The first port_tchk is the stamp event and can include
an edge specification. The second port_tchk is the check event and can include an edge
specification. rvalue is the maximum skew limit.

Example

(INSTANCE x) (TIMINGCHECK (SKEW (posedge clk1) (posedge clk2) (6)) )
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As with all port_tchks, the COND construct can be used to specify conditions
associated with the skew timing check.

18.8.8 The WIDTH Entry

The WIDTH entry specifies limits for a minimum pulse width timing check. The
minimum pulse width timing check is the minimum allowable time for the positive
(high) or negative (low) phase of each cycle.

Syntax

( WIDTH port_tchk value )

port_tchk refers to the port at which the minimum pulse width timing check is
applied. If it includes an edge specification, then the data will apply to the width
check for the phase of the signal beginning with this edge (see example below). If
port_tchk does not include an edge specification, then the data applies to both high
and low phases of the signal. value is the minimum pulse width limit and cannot be
negative.

Example

(INSTANCE x.b) (TIMINGCHECK (WIDTH (posedge clk) (30)) (WIDTH (negedge clk)
(16.5)) )

In this example, the first minimum pulse width check is for the phase beginning
with the positive clock edge, i.e., the high phase of the clock, and the second
minimum pulse width check is for the phase beginning with the negative clock edge,
i.e., the low phase. As with all port_tchks, the COND construct can be used to
specify conditions associated with the minimum pulse width timing check.

18.8.9 The PERIOD Entry

The PERIOD entry specifies limit values for a minimum period timing check. The
minimum period timing check is the minimum allowable time for one complete cycle
of the signal.

Syntax

( PERIOD port_tchk value )

port_tchk refers to the port at which the minimum period timing check is applied.
If it includes an edge specification, then the data will apply to the period check
between consecutive edges of this direction (see example below). If port_tchk does
not include an edge specification, then the data applies both to period checks between
consecutive rising edges and between consecutive falling edges if they are present in
the timing model. value is the minimum period limit and cannot be negative.
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Example

(INSTANCE x.b) (TIMINGCHECK (PERIOD (posedge clk) (46.5))

In this example, the data applies to a minimum period check between consecutive
rising edges. As with all port_tchks, the COND construct can be used to specify
conditions associated with the minimum period timing check.

18.8.10 The NOCHANGE Entry

The NOCHANGE entry specifies limit values for a nochange timing check. The
nochange timing check is a signal check relative to the width of a control pulse. A
"setup" period is established before the start of the control pulse and a "hold" period
after the pulse. The signal checked against the control signal must remain stable
during the setup period, the entire width of the pulse and the hold period. A typical
use of a nochange timing check is to model the timing of memory devices, when
address lines must remain stable during a write pulse with margins both before and
after.

Syntax

( NOCHANGE port_tchk port_tchk rvalue rvalue )

The first port_tchk refers to the control port, which is typically a write enable
input to a memory or register file device. An edge specification must be included for
the control port.

The second port_tchk refers to the port checked against the control port, which is
typically an address or select input to a memory or register file device. An edge
specification can be included.

The first rvalue is the minimum time that the data/address must be present
(stable) before the specified edge of the control signal (setup). The second rvalue is
the minimum time that the data/address must remain stable after the opposite edge of
the control signal (hold).

Example

(INSTANCE x) (TIMINGCHECK (NOCHANGE (negedge write) addr (4.5) (3.5)) )

This example defines a period beginning 4.5 time units before the falling edge of
write and ending 3.5 time units after the subsequent rising edge of write. During this
time period, the addr signal must not change.

As with all port_tchks, the COND construct can be used to specify conditions
associated with the nochange timing check.
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18.9 Timing Environment and Constraints

Timing specifications that start with the TIMINGENV keyword associate constraint
values with critical paths in the design and provide information about the timing
environment in which the circuit will operate. Constructs in this section are used in
forward-annotation and not back-annotation.

Syntax

te_spec
::= (TIMINGENV te_def+ )
te_def ||=
cns_def // constraint ::= tenv_def // timing environment

cns_def ::= ( PATHCONSTRAINT name? port_instance port_instance+ rvalue
rvalue ) ||= ( PERIODCONSTRAINT port_instance value exception? ) ||= ( SUM
constraint_path constraint_path+ rvalue rvalue? ) ||= ( DIFF constraint_path
constraint_path value value? ) ||= ( SKEWCONSTRAINT port_spec value )

Any number of te_def entries may appear in a te_spec entry. Each te_def will be a
PATHCONSTRAINT, PERIODCONSTRAINT, SUM, DIFF or
SKEWCONSTRAINT constraint entry, containing constraint values for the design
or an ARRIVAL, DEPARTURE, SLACK or WAVEFORM timing environment
entry, containing information about the timing environment in which the circuit will
operate.

Constraint entries provide information about the timing properties that a design is
required to have in order to meet certain design objectives. A tool that is synthesizing
some aspect of the design (logic synthesis, layout, etc.) will adapt its strategy to try to
ensure that the constraints are met and issue warning messages in the event that they
cannot be met.

The following sections describe the SDF constraint constructs.

18.9.1 The PATHCONSTRAINT Entry

The PATHCONSTRAINT entry represents delay constraints for paths. Path
constraints are the critical paths in a design identified during timing analysis. Layout
tools can use these constraints to direct the physical design. The constraint specifies
the maximum allowable delay for a path, which is typically identified by two ports,
one at each end of the path. You can also specify intermediate ports to uniquely
identify the path.

Syntax

( PATHCONSTRAINT name? port_instance port_instance+rvalue rvalue )
name ::= ( NAME QSTRING )

name is optional and allows a symbolic name to be associated with the path. This
name should be used by the tool to identify the path to the user when information
about the path (problems, failures, etc.) is to be provided. The name is assumed to be
more convenient for this purpose than the list of port instances.
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The first port_instance is the start of the path. The last port_instance is the end of
the path. You can specify intermediate points along the path by using additional
port_instances in this entry. The first rvalue is the maximum rise delay between the
start and end points of the path. The second rvalue is the maximum fall delay
between the start and end points of the path.

Example

(INSTANCE x) (TIMINGENV
(PATHCONSTRAINT y.z.i3 y.z.o2 a.b.o1 (25.1) (15.6)) )

18.9.2 The PERIODCONSTRAINT Construct

The PERIODCONSTRAINT construct allows a path constraint value to be specified
for groups of paths in a synchronous circuit. All paths in the group will be from the
common clock input of some flip-flops to the data inputs of the flip-flops that share
the common clock. This can be used to derive the frequency at which a circuit must
operate as a constraint on how long signals can take after a clock edge to reach the
register data inputs.

Syntax

( PERIODCONSTRAINT port_instance value exception?)
exception ::= ( EXCEPTION cell_instance+ )

port_instance identifies the common clock signal which is the start of all
constrained paths. Whereas the start of a PATHCONSTRAINT entry is normally an
input port, port_instance here is normally the output port of the device that drives the
clock of the flip-flops. Only flip-flops directly connected to this output are in
constrained paths. Paths that pass through other buffers before reaching a flip-flop
clock are also considered in the group constrained by this entry.

Period Constraint value is the maximum allowable delay for each path in the
group. Included in this delay is the clock-to-output delay of the flip-flop driven from
port_instance, the setup time of the flip flop that ends the path, and the delay through
any combinational logic before arrival at the data input of a flip-flop. Not included is
the difference in the timing of the clock of that flip-flop that ends the path from the
clock that starts the path. These two times will cause the value supplied in a
PERIODCONSTRAINT entry to be different (typically smaller) than the intended
clock period at which the circuit will operate. Since only one value can be supplied
for all paths in this group, some data may be lost in combining many
PATHCONSTRAINT entries into one PERIODCONSTRAINT entry. exception is
optional and allows paths to be excluded from the group by the identification of a cell
through which they pass. One or more cell instances can be listed after the
EXCEPTION keyword. The hierarchical path to these cell instances is relative to the
scope or design region identified by the cell entry. Therefore, the
PERIODCONSTRAINT entry must appear at a hierarchical level that includes the
cell instance that drives the common clock inputs of the flip-flops and any cell
instances to be placed in the exception list.
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Example

(INSTANCE x) (TIMINGENV
(PERIODCONSTRAINT bufa.y (10) (EXCEPTION (INSTANCE dff3) ) ) )

Clearly, any tool that makes use of PERIODCONSTRAINT entries in SDF must
be able to traverse the design topology and recognize flip-flops and their clock and
data inputs.

18.9.3 The SUM Entry

The SUM entry represents a constraint on the sum of the delay over two or more
paths in a design.

Syntax

(SUM constraint_path constraint_path+ rvalue rvalue? )
constraint_path ::= ( port_instance port_instance )

Each constraint_path specifies a path to be included in the sum. You must specify
at least two paths, but can specify more.In each constraint_path the first
port_instance is the beginning of the path and the second port_instance is the end of
the path. rvalue is the constraint value. The total (sum) of the individual delays
associated with each constraint_path must be less than rvalue. If two rvalues are
supplied, the first applies to the rising transition at the end of the path and the
second to the falling.

Example

(INSTANCE x) (TIMINGENV (SUM (m.n.o1 y.z.i1) (y.z.o2 a.b.i2) (67.3)) )

This example constrains the sum of the delays along the two nets shown as heavy
lines in the diagram to be less than 67.3 time units.

18.9.4 The DIFF Constraint

The DIFF entry represents a constraint on the difference in the delay over two paths
in a design. Syntax (DIFF constraint_path constraint_path value value?)
constraint_path specifies a path between two ports. You must specify exactly two
paths. In each constraint_path the first port_instance is the beginning of the path and
the second port_instance is the end of the path. value is the constraint value and must
be a positive number or zero. The absolute value of the difference of the individual
delays in the two circuit paths must be less than value. If two values are supplied, the
first applies to the rising transition at the end of the path and the second to the
falling.

Example

(INSTANCE x) (TIMINGENV (DIFF (m.n.o1 y.z.i1) (y.z.o2 a.b.i2) (8.3) ) )
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18.9.5 The SKEWCONSTRAINT Entry

The SKEWCONSTRAINT entry represents a constraint on the spread of delays from
a common driver to all driven inputs. Only the driving output port can be specified in
this construct. All inputs connected to this output are implied end-points for
constrained paths. Only paths over interconnect can be constrained as these implied
paths cannot pass through any active devices.

Syntax

( SKEWCONSTRAINT port_spec value )

port_spec refers to the port driving the net. value is the constraint value and must
be a positive number or zero (although zero clock skew might be a hard constraint
for a layout tool to meet!). The delays from the output specified by port_spec to all
inputs that it drives may not differ from each other by more than value. This does not
place a constraint on the actual value of the delays, just their "spread".

Example

(CELL (CELLTYPE "buf") (INSTANCE top.clockbufs) (TIMINGENV
(SKEWCONSTRAINT (posedge y) (7.5))) )

In this example, a buffer cell of cell type buf is used to drive some clock inputs in
a circuit. It is buried in the design hierarchy by being instantiated as bufb in a user
block called clockbufs, which in turn is part of the block top. In the excerpt from an
SDF file, this buffer is identified in a CELL entry and its output is specified in a
SKEWCONSTRAINT entry. The effect is to request that the arrival of the positive
edge of the clock should not deviate by more than 7.5 between all the inputs driven
by the heavily drawn net in the diagram. Neither the inputs nor the net name need to
be specified in the SDF file entry. Note that the driven inputs can be anywhere in the
design, irrespective of the hierarchical organization.

18.10 Timing Environment – Information Entries

Timing environment entries provide information about the timing environment in
which the circuit will operate. This can be used by analysis tools to determine
whether or not a design will operate correctly given the back-annotation timing data
given elsewhere in the file. It can also be used to compute constraints to be forward-
annotated to subsequent stages in the design synthesis process.

Syntax

tenv_def ::= ( ARRIVAL port_edge? port_instance rvalue rvalue rvalue rvalue )
||= ( DEPARTURE

port_edge? port_instance rvalue rvalue rvalue rvalue ) ||= ( SLACK
port_instance rvalue rvalue rvalue rvalue NUMBER? ) ||= ( WAVEFORM
port_instance NUMBER edge_list )

The following sections describe the SDF timing environment constructs.
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18.10.1 The ARRIVAL Construct

The ARRIVAL construct defines the time at which a primary input signal is to be
applied during the intended circuit operation. Tools use this information to analyze
the circuit for timing behavior and to compute constraints for logic synthesis and
layout.

Syntax

( ARRIVAL port_edge? port_instance rvalue rvalue rvalue rvalue ) bufa clockbufs

port_edge identifies a port and signal edge that form the time reference for the
arrival time specification. The port must be an input port. The port_edge is required
if the primary input signal is a fan-out from a sequential element, in which case,
port_edge is usually referred to an active edge of a clock signal. Otherwise, the
port_edge can be omitted. All ARRIVAL constructs that do not have the port_edge
refer to the same implicit time reference point. This reference time should be treated
as the time 0 of all WAVEFORM constructs. Note that, to fully specify a timing
environment, a WAVEFORM statement is required for each clock signal.
port_instance specifies the port at which the arrival time is to be defined. It must be
an input or bidirectional port that is a primary (external) input of the top-level
module.

Four rvalues carry the arrival-time data in this order: earliest rising, latest rising,
earliest falling and latest falling arrival times. All values are relative to the time
reference, either by a port_edge, or by the implicit reference point. The earliest
arrival times must be less than the latest arrival times for the same transition.

Multiple ARRIVAL statements can be defined for the same input to represent
signal paths of different reference port_edges.

Example

(INSTANCE top) (TIMINGENV (ARRIVAL (posedge MCLK) D[15:0] (10) (40) (12) (45) ) )

This example specifies that rising transitions at D[15:0] are to be applied no
sooner than 10 and no later than 40 time units after the rising edge of the reference
clock MCLK. Falling transitions are to be applied no sooner than 12 and no later
than 45 time units after the edge.

18.10.2 The DEPARTURE Construct

The DEPARTURE construct defines the time at which a primary output signal is to
occur during the intended circuit operation. Tools use this information to analyze the
circuit for timing behavior and to compute constraints for logic synthesis and layout.

Syntax

(DEPARTURE port_edge? port_instance rvalue rvalue rvalue rvalue )
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port_edge identifies a port and signal edge that form the time reference for the
departure time specification. The port must be an input port. The port_edge is
required if the primary output is a fanout from a sequential element, in which case,
port_edge is usually referred to an active edge of a clock signal. Otherwise, the
port_edge can be omitted. All DEPARTURE constructs that do not have the
port_edge refer to the same implicit time reference point. This reference time should
be treated as the time 0 of all WAVEFORM constructs. Note that, to fully specify a
timing environment, a WAVEFORM statement is required for each clock signal.
port_instance specifies the port at which the departure time is to be defined. It must
be an output or bidirectional port that is a primary (external) output of the top-level
module. Four rvalues carry the departure-time data in this order: earliest rising, latest
rising, earliest falling and latest falling departure times. All values are relative to the
time reference, either by a port_edge, or by the implicit reference point. The earliest
departure times must be less than the latest departure times for the same transition.
Multiple DEPARTURE statements can be defined for the same output to represent
signal paths of different reference port_edges.

Example

(INSTANCE top) (TIMINGENV (DEPARTURE (posedge SCLK) A[15:0] (8) (20) (12) (34)))

The example specifies that rising transitions at primary output A[15:0] are to
occur no sooner than 8 and no later than 20 time units after the rising edge of the
reference clock SCLK. Falling transitions are to occur no sooner than 12 and no later
than 34 time units after the edge.

18.10.3 The SLACK Construct

The SLACK construct is used to specify the available slack or margin in a delay
path. This is a comparison of the calculated delay over a path to the delay constraints
imposed upon that path. Positive slack indicates that the constraints are met with
room to spare. Negative slack indicates a failure to construct the circuit according to
the constraints. A layout or logic synthesis tool can use slack information to make
trade-offs in cell placement and routing or re-synthesis of parts of the circuit. The
objective should be to eliminate negative slack and achieve an even distribution of
positive slack.

Syntax

( SLACK port_instance rvalue rvalue rvalue rvalue NUMBER? )

port_instance specifies the input port at which slack/margin information is given
in this entry. Paths terminating at this port have at least the indicated slack/margin.
It is not possible in this construct to specify individual paths. The values given must
be the minimum of all paths that converge to the:

(CELL (CELLTYPE "cpu")
(INSTANCE top) (TIMINGENV (WAVEFORM clka 15 (posedge 0 2) (negedge 5 7)) ) )
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0 5 10 15
Period = 15

This example shows the specification of a waveform of period 15 to be applied to
port top.clka. Within each period, a rising edge occurs at somewhere between 0 and
2 and a falling edge somewhere between 5 and 7. Tools unable to deal with
uncertainty in waveforms would place the rising edge and 1 and the falling edge at 6
and issue a warning.

Example

(CELL (CELLTYPE "cpu") (INSTANCE top) (TIMINGENV (WAVEFORM clkb 25 (negedge
0) (posedge 5) (negedge 10) (posedge 15) ) ) )

This example shows the specification of a waveform of period 25 to be applied to
port top.clkb. Within each period, a falling edge occurs at 0, a rising edge at 5, a
falling edge at 10 and a rising edge at 15.

Example

(CELL (CELLTYPE "cpu") (INSTANCE top) (TIMINGENV (WAVEFORM clkb 50 (negedge
-10) (posedge 20) ) ) )

This example shows that negative numbers can be used in defining a waveform.

0 5 10 15 20 25 30
Period = 25
-20 -10 0 10 20 30 40
Period = 50

The SLACK construct is used to specify the available slack or margin in a delay
path. This is a comparison of the calculated delay over a path to the delay constraints
imposed upon that path. Positive slack indicates that the constraints are met with
room to spare. Negative slack indicates a failure to construct the circuit according to
the constraints. A layout or logic synthesis tool can use slack information to make
trade-offs in cell placement and routing or re-synthesis of parts of the circuit. The
objective should be to eliminate negative slack and achieve an even distribution of
positive slack.

Syntax

( SLACK port_instance rvalue rvalue rvalue rvalue NUMBER? )

port_instance specifies the input port at which slack/margin information is given
in this entry. Paths terminating at this port have at least the indicated slack/margin.
It is not possible in this construct to specify individual paths. The values given must
be the minimum of all paths that converge to the specified port_instance. However,
the slack/margin may be given at various places on the same path.
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Four rvalues carry the slack/margin data. In order, they are the rising setup slack,
the falling setup slack, the rising hold slack and the falling hold slack. "Rising" and
"falling" indicate the direction of transitions at the specified port_instance to which
data applies. The setup slack is the additional delay that could be tolerated in all
paths ending at this port without causing design constraints to be violated. Similarly,
the hold slack is the reduction of the delay that could be tolerated in all these paths.
If rtriples are used in these rvalues, then each number belongs to the data set for that
position in the triple. Since the prevailing use of these data sets is to carry data for
minimum, typical and maximum delays, setup slack rtriples will have the unusual
property of decreasing in value from left to right.

NUMBER is optional and, if present, represents the clock period on which the
slack/margin values are based. The clock period refers to the one specified by a
WAVEFORM construct.

Example

(CELL (CELLTYPE "cpu") (INSTANCE macro.AOI6) (TIMINGENV (SLACK B (3) (3) (7)
(7)) ) )

In this example, the delay of any or all data paths leading to port macro.AOI6.B
could be increased by 3 time units without violating a setup requirement on a
constrained device down the path traversed by this port. This SLACK entry indicates
that the signal arrives at port macro.AOI6.B in time to meet the setup time
requirement of a flip-flop down the path with 3 time units to spare. Thus, the signals
could be delayed up the data path by an additional 3 time units with no ill
consequences. The example also shows that the delay of any or all datapaths leading
to port macro.AOI6.B could be decreased by 7 time units without violating a hold
requirement on a constrained device down the path.

Multiple SLACK entries are allowable for the same port_instance and are distinct
if  NUMBER is different.

18.10.4 The WAVEFORM Construct

The WAVEFORM construct allows the specification of a periodic waveform that will
be applied to a circuit during its intended operation. Typically, this will be used to
define a clock signal. Tools can use this information in analyzing the circuit for
timing behavior and to compute constraints for logic synthesis and layout.

Syntax

( WAVEFORM port_instance NUMBER edge_list )
edge_list ::= pos_pair+ ||= neg_pair+
pos_pair ::=  ( posedge RNUMBER RNUMBER?) ( negedge RNUMBER RNUMBER?)
neg_pair ::= ( negedge RNUMBER RNUMBER?) ( posedge RNUMBER RNUMBER? )

port_instance identifies the port in the circuit at which the waveform will appear.
It must be an input or bidirectional port. If the port is not a primary input of the
circuit, i.e., if it is driven by the output of some other circuit element in the scope of
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the analysis, then the signal driven in the circuit should be ignored and the specified
waveform should replace it in the analysis. The hierarchical path to this port is
relative to the scope or design region identified by the cell entry.

NUMBER specifies the period of the waveform. The waveform described repeats
indefinitely at this interval.

edge_list describes a single period of the waveform. It consists of a list of edge
pairs, which can be either a posedge entry followed by a negedge entry or a negedge
entry followed by a posedge entry. Thus, the total number of edges in the list will be
even and edges will alternate between posedge and negedge. In addition to the
direction of the transition, each edge gives the time at which the transition takes
place relative to the start of each period. Offsets must increase monotonically
throughout the edge_list and must not exceed the period. If one RNUMBER is
supplied, then this precisely defines the transition offset. If two RNUMBERs are
supplied, then they define an uncertainty region in which the transition will take
place. The first RNUMBER gives the beginning of the uncertainty region and the
second RNUMBER gives its end. Tools using this construct with two RNUMBERs
should assume that a single transition of the specified direction occurs somewhere in
the uncertainty region, but should make no assumptions about exactly where. Tools
unable to model this edge uncertainty should issue a warning message and use the
mean of the two RNUMBERs to locate the transition.

Example

(CELL (CELLTYPE "cpu")(INSTANCE top) (TIMINGENV (WAVEFORM clka 15 (posedge
0 2) (negedge57)) ) )
0 5 10 15
Period=15

This example shows the specification of a waveform of period 15 to be applied to
port top.clka. Within each period, a rising edge occurs at somewhere between 0 and
2 and a falling edge somewhere between 5 and 7. Tools unable to deal with
uncertainty in waveforms would place the rising edge and 1 and the falling edge at 6
and issue a warning.

Example

(CELL (CELLTYPE "cpu") (INSTANCE top) (TIMINGENV (WAVEFORM clkb 25 (negedge
0) (posedge 5) (negedge 10) (posedge 15) ) ) )

This example shows the specification of a waveform of period 25 to be applied to
port top.clkb. Within each period, a falling edge occurs at 0, a rising edge at 5, a
falling edge at 10 and a rising edge at 15.

Example

(CELL (CELLTYPE "cpu") (INSTANCE top) (TIMINGENV (WAVEFORM clkb 50
(negedge -10) (posedge 20) ) ) )
.0 5 10 15 20 25 30
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Period = 25
-20 -10 0 10 20 30 40
Period = 50

18.11 SDF File Examples

SDF FILE EXAMPLE 1

(DELAYFILE
(SDFVERSION "1.0") (DESIGN "system") (DATE "Saturday September 30
08:30:33 PST 1990") (VENDOR "Yosemite Semiconductor") (PROGRAM "delay_calc")
(VERSION "1.5") (DIVIDER /) (VOLTAGE 5.5:5.0:4.5) (PROCESS "worst")
(TEMPERATURE 55:85:125) (TIMESCALE 1ns) (CELL (CELLTYPE "system")
(INSTANCE) (DELAY (ABSOLUTE (INTERCONNECT P1/z B1/C1/i (.145::.145)
(.125::.125)) (INTERCONNECT P1/z Bl/C2/i2 (.135::.135) (.130::.130))
(INTERCONNECT B1/C1/z Bl/C2/il (.095::.095) (.095::.095))
(INTERCONNECT
B1/C2/z B2/Cl/i (.145::.145) (.125::.125)) (INTERCONNECT  B2/Cl/z
B2/C2/il (.075::.075) (.075::.075)) (INTERCONNECT B2/C2/z P2/i
(.055::.055) (.075::.075)) (INTERCONNECT B2/C2/z D1/i (.255::.255)

(.275::.275)) (INTERCONNECT D1/z B2/C2/i2 (.155::.155) (.175::.175))
(INTERCONNECT D1/z P3/i (.155::.155) (.130::.130)) ) ) ) (CELL
(CELLTYPE "INV") (INSTANCE B1/C1) (DELAY (ABSOLUTE (IOPATH i z (.345::.345)
(.325::.325) ) ) ) ) (CELL (CELLTYPE "OR2") (INSTANCE B1/C2) (DELAY
(ABSOLUTE (IOPATH i1 z (.300::.300) (.325::.325) ) (IOPATH i2 z
(.300::.300) (.325::.325) ) ) ) ) (CELL (CELLTYPE "INV") (INSTANCE
B2/C1) (DELAY (ABSOLUTE (IOPATH i z (.345::.345) (.325::.325) ) )
) ) (CELL (CELLTYPE "AND2") (INSTANCE B2/C2) (DELAY (ABSOLUTE (IOPATH
i1 z (.300::.300) (.325::.325) ) (IOPATH i2 z (.300::.300) (.325::.325)
) ) ) ) (CELL (CELLTYPE "INV") (INSTANCE D1) (DELAY (ABSOLUTE (IOPATH
i z (.380::.380) (.380::.380) ) ) ) ) )

SDF FILE EXAMPLE 2

This example shows how you can use the COND construct with the IOPATH and
TIMINGCHECK constructs.

(DELAYFILE (SDFVERSION "2.0") (DESIGN "top") (DATE "Feb 21, 1992 11:30:10")
(VENDOR "Cool New Tools") (PROGRAM "Delay Obfuscator") (VERSION "v1.0")
(DIVIDER .) (VOLTAGE :5:) (PROCESS "typical") (TEMPERATURE :25:) (TIMESCALE
1ns) (CELL (CELLTYPE "CDS_GEN_FD_P_SD_RB_SB_NO") (INSTANCE top.ff1)
(DELAY (ABSOLUTE (COND (TE = = 0 && RB = = 1 && SB = = 1) (IOPATH (posedge
CP) Q (2:2:2) (3:3:3) ) ) ) (ABSOLUTE (COND (TE = = 0 && RB = = 1 &&
SB = = 1) (IOPATH (posedge CP) QN (4:4:4) (5:5:5) ) ) ) (ABSOLUTE (COND
(TE = = 1 && RB = = 1 && SB = = 1) (IOPATH (posedge CP) Q (6:6:6) (7:7:7)
) ) ) (ABSOLUTE (COND (TE = = 1 && RB = = 1 && SB == 1) (IOPATH (posedge
CP) QN (8:8:8) (9:9:9) ) ) ) (ABSOLUTE (IOPATH (negedge RB) Q (1:1:1)
(1:1:1) ) ) (ABSOLUTE (IOPATH (negedge RB) QN (1:1:1) (1:1:1) ) )
(ABSOLUTE (IOPATH (negedge SB) Q (1:1:1) (1:1:1) ) ) (ABSOLUTE (IOPATH
(negedge SB) QN (1:1:1) (1:1:1) ) ) ) (DELAY (ABSOLUTE (PORT D (0:0:0)
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(0:0:0) (5:5:5) ) )
(ABSOLUTE
(PORT CP (0:0:0) (0:0:0) (0:0:0) ) ) (ABSOLUTE (PORT RB (0:0:0) (0:0:0)
(0:0:0) ) ) (ABSOLUTE (PORT SB (0:0:0) (0:0:0) (0:0:0) ) ) (ABSOLUTE
(PORT TI (0:0:0) (0:0:0) (0:0:0) ) ) (ABSOLUTE (PORT TE (0:0:0) (0:0:0)
(0:0:0) ) ) ) (TIMINGCHECK (SETUP D (COND D_ENABLE (posedge CP)) (1:1:1)
) (HOLD D (COND D_ENABLE (posedge CP)) (1:1:1) ) (SETUPHOLD TI (COND
TI_ENABLE (posedge CP)) (1:1:1) (1:1:1)) (WIDTH (COND ENABLE (posedge
CP)) (1:1:1) ) (WIDTH (COND ENABLE (negedge CP)) (1:1:1) ) (WIDTH
(negedge SB) (1:1:1) ) (WIDTH (negedge RB) (1:1:1) ) (RECOVERY (posedge
RB) (COND SB (negedge CP)) (1:1:1) ) (RECOVERY (posedge SB) (COND
RB (negedge CP)) (1:1:1) ) ) ) )

SDF FILE EXAMPLE 3

This example shows how State Dependent Path Delays can be annotated using
COND and IOPATH constructs.

(DELAYFILE (SDFVERSION
"2.0") (DESIGN "top") (DATE "Nov 25, 1991 17:25:18") (VENDOR "Slick
Trick Systems") (PROGRAM "Viability Tester") (VERSION "v3.0") (DIVIDER
.) (VOLTAGE :5:) (PROCESS "typical") (TEMPERATURE :25:) (TIMESCALE
1ns) (CELL (CELLTYPE "XOR2") (INSTANCE top.xl) (DELAY (INCREMENT (COND
i1 (IOPATH i2 o1 (2:2:2) (2:2:2) ) ) ) (INCREMENT (COND i2 (IOPATH
i1 o1 (2:2:2) (2:2:2) ) ) ) (INCREMENT (COND ~i1 (IOPATH i2 o1 (3:3:3)
(3:3:3) ) ) ) (INCREMENT (COND ~i2 (IOPATH i1 o1 (3:3:3) (3:3:3) )
) ) ) ) )

SDF FILE EXAMPLE 4

This example shows how to forward annotate timing constraints. The key to
specifying SDF constraints is to identify INSTANCE-PINS of library cells. In the
example shown below I2 is an instance and H01 is a PIN (port) on that instance.

(DELAYFILE (SDFVERSION "3.0")
(DESIGN "testchip") (DATE "Dec 17, 1991 14:49:48") (VENDOR "Big Chips
Inc.") (PROGRAM "Chip Analyzer") (VERSION "1.3b") (DIVIDER .) (VOLTAGE
:3.8:) (PROCESS "worst") (TEMPERATURE : 37:) (TIMESCALE 10ps) (CELL
(CELLTYPE "XOR") (INSTANCE ) (TIMINGENV (PATHCONSTRAINT I2.H01  I1.N01
(989:1269:1269) (989:1269:1269) ) (PATHCONSTRAINT I2.H01 I3.N01 (904:1087:1087)
(904:1087:1087) ) ) ) )

18.12 Delay Model

18.12.1 Introduction

The delay model provides a guideline for using SDF in ASIC application tools. All
constructs in SDF should be directly applicable to the delay model. ASIC timing is
divided into forward annotation and back annotation. Although SDF supports both
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timing concepts, this section concentrates on ASIC timing back-annotation model. A
future release of SDF will provide an abstract model for forward annotation.

The following section defines the delay model and provides rules that should be
adhered to to ensure proper interpretation and usage of SDF constructs.

18.12.2 The List of Delay Models

The delay model consists of the following kinds of delays:

1.

2.

3.

4.

5.

6.

7.

Interconnect delay (INT), represented by the INTERCONNECT delay construct
in SDF.

Path delay (PD), represented by IOPATH delay construct in SDF.

State-dependent path delay (SDPD), represented by COND keyword in SDF.

Port delay (IPD), represented by PORT delay construct in SDF.

Device delay (DEV), represented by DEVICE construct in SDF. Note when
specified with a cell output port, this timing object is a degenerate path delay;
when specified with a primitive instance, this timing object is its intrinsic delay.

Path pulse (PP), represented by PATHPULSE construct in SDF.

Timing checks (TC), represented with several keywords in SDF depending on
the type of the timing checks.

18.12.3 Rules for the Delay Model

Summary of the Rules for the Delay Models in SDF

1.

2.

3.

4.

5.

6.

7.

8.

Path delay is described between any input (or bidirectional) port to any output
(or bidirectional) port in the same cell.

Multiple path delays can be defined for any output (or bidirectional) port.

Multiple path delays can be defined between any pair of ports only by using state
dependent delays.

Path delay can have up to twelve transition states with twelve different delay
values.

Negative timing values for absolute input-output path, port, net, device and
interconnect delays may default to zero in certain application tools.

Interconnect delay is described between any output (bidirectional) port of a cell
to any input (bidirectional) port of any cell.

Multiple interconnect delays from different sources can be described for any
input (bidirectional) port, destination port.

Depending on the type of the timing check, it can be applied to a single or a pair
of ports.
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9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Timing checks are allowed from an output port to another output port.

Timing checks are applied after the interconnect delays are applied.

Negative timing check limit values are allowed only for the SDF SETUPHOLD,
RECREM and NOCHANGE constructs. Some application tools may use the
negative values while others may compile them as zero values.

INTERCONNECT delay between a source and a destination signal cannot be
used if PORT delay is specified for the same destination signal.

Similarly, PORT delay for a destination signal cannot be used if an
INTERCONNECT delay is specified between a source and the same destination
signal.

IOPATH delay cannot be used if a DEVICE delay is specified for the same
output

Port within the same cell.

Similarly, DEVICE delay cannot be used if an IOPATH delay is specified
between an input port and the same output port within the same cell.

All timing objects using the internal nodes may be ignored by application tools
that have no concept of the internal nodes.

For the same timing object, delay annotation is executed in the sequential order
as encountered in a single SDF file.

18.13 DCL – New Emerging Standard

DCL (Delay Calculation Language) is a new standard in the area of timing
descriptions and is useful for deep submicron designs where interconnect delay
descriptions are involved. The information on this is available from CFI. Originally
developed at IBM where the deep submicron technology was implemented first, this
is now accepted as CFI standard.

For interconnect effects of distributed RLC characteristics need to be modeled to
characterize the transient function of each driven point on a net. Characterization of
delay must consider state and switching dependencies between the controlling input
to a gate and the other inputs. Signal slew rates, and degradation, or attenuation, as a
result of crosstalk have become factors to be coped with in the delay characterization
process.

DCL provides a file format and a programming interface that replaces the access
routines typically used with SDF. DCL may be used for describing synthesis libraries
and attempts have been made to make a single format description for synthesis as
well simulation libraries for the ASIC. Currently, synthesis tools typically use a
proprietary format and the simulation tools are using SDF files. Timing constraints
are provided by SDF for synthesis and timing analysis tools. The working group on
extensions of SDF, plans to add some of the new features into SDF 4.0 and the 3.0
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specification already contains several features for describing interconnect delays as
given earlier in this chapter.

18.14 OMI Standard

The OMI is a new standard proposed for interoperability of models across different
languages and environments. This relies on a subset of PLI that is applicable to
linking and running models like the one provided in veriuser.h files [[tf_] routines
However, this requires an additional software component called the model manager
which must work together with all the tools—thus making it a framework like or
centralized interface as opposed to one-to-one like in the PLI. Similar interfaces have
been proposed in the past [see the CFI web site for intertool communication standard
accepted in early nineties—but have not really taken root. However, the IP and core
methodology may rely on this new interface and attempts are being made in this
direction.



19 VERILOG-A AND

VERILOG-MS

19.1 Analog Module

19.1.1 Introduction

SPICE is a common method of modeling analog descriptions. Verilog-A and
Verilog-MS allow Verilog HDL to be used for describing electrical circuit
behaviorally like the digital system. The digital behavior is described behaviorally
under the initial and always blocks. A new analog block is added to Verilog HDL
for circuit behavior. Differential equations following Kirchoff’s laws are described in
the analog block using the symbol <+ for ‘=’ commonly used in Mathematics.
Analog nets are called nodes and have values that are n-tuples, typically voltage,
current and few other characteristics. In this chapter, we describe the analog modules
using the terminology and syntax that reuses those defined for digital Verilog
whenever it is the same and defines the new syntax and semantic items. As in the
rest of the book, each feature is explained in terms of semantic introduction, example
and syntax.

19.1.2 Examples

An example of a resistor is:

module resistor(rl, r2);
inout rl, r2; // Analog ports are almost always inout like in the bidirectionals
electrical rl,r2;

parameter real r=l;
parameter real tc=1.5m;
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real reff;
initial
begin

reff = r *( 1 + tc * $temp());
end

analog
begin

I(rl, r2) <+ V(rl, r2))/reff;
end

endmodule

Example 19-1. Analog resistor described in Verilog’s analog extensions.

19.1.3 Syntax

analog_module ::=
module_keyword module_identifier [list_of_ports]

{analog_module_item}
endmodule

19.2 Analog Data Declarations

19.2.1 Introduction

The nets or nodes in analog designs have values that are real numbers and are
typically measures such as voltage, current, temperature and are evaluated as
differentials with respect to time. Such nets are declared within the analog modules
as electrical types.

19.2.2 Examples

electrical rl, r2;
electrical [31:0] il, i2;

Example 19-2. Electrical type declarations in analog or mixed signal
modules.

19.2.3 Syntax

analog_data_declaration::= electrical list_of_electrical_ identifiers
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19.3 Analog Behavioral Descriptions

19.3.1 Introduction

The analog behaviors are described in a new block that begins with keyword analog.
One can express differential equations that will be solved using an iterative method
of solving differential equations. The simulation algorithm consists of selecting a
time-step for solving the set of equations generated from the parallel analog block.
And then iteratively changing the time-step until solution is arrived. This is different
from SPICE methodology as we do not have a predefined set of SPICE library
elements. The level of abstraction is raised from structural to behavioral and thereby
providing capability of describing analog systems or cells that could be larger in size
and are more complex in design and could be synthesized using analog synthesis
tools.

19.3.2 Examples

A resistor is described in Example 19-1. A transformer is described below in
Example 19-3.

module transformer(inl, in2, outl, out2);
analog
begin

V(node, outm) <+ leakL * dot(I(node, outl);
V(out2, node) <+ ratio * V(in2, inl);

end
endmodule

Example 19-3. Example of analog block.

19.3.3 Syntax

analog_statement ::=
analog analog_statement

| initial_statement

analog_statement ::=
analog_assignment
| sequential_assignment
| sequential_block

analog_assignment ::=
electrical_identifier <+ analog_ expression

analog_expression is a combination of expressions in Verilog HDL and functions described
before.
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19.4 Expressions in Analog Assignments

As the analog equations are different from digital assignments, additional operations
in expressions are provided in Verilog-A to handle functions such as integrals and
differentials, sine, cosine amongst others. The key functions in this area are:

Trignometric Functions

sine cosine. tan asin acos atan sinh cosh tanh asinh acosh atanh

Calculus Functions

dot (Differential) and integ(Integral)

Simulation Environment Functions

$time $temp $vt[Thermal Voltage] $analysis (string)

Waveform Filter Functions

$transition $slew $tdelay $zdelay

Simulator Time Step Control Functions

$threshold $last_crossing $bound_step $break_point

Simulator Information Functions

$strobe $warning $error $fatal

19.5 Mixed Signal Designs in Verilog

The standard for mixed-signal designs based on Verilog HDL and Verilog-A analog
description language is described here. It is expected that an interface module will be
defined that instantiates an analog module and a digital module. This will be
transparent to the language and one really has to develop a model underneath for the
connections of electrical wires to digital net types.

module mixed-signal;
electrical a1;
wire w2, w3, w4;

manalog mai(al, w2, w3);
mdigital mdi(al, w4);

endmodule

module manalog(a1, a2, a3);
inout a1,  a2,  a3;

electrical a1, a2, a3;

// Body of the module
endmodule

module mdigital(w1, w2, w3);
output w3;
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input w1, w2;
// Body of the module

endmodule

Example 19-4. Mixed signal design with Verilog MS.

In this example, analog to digital converters will be interfaced at the first port of
instance mdi and digital to analog converters will be placed at the second and third
ports of mai. This will be done implicitly by the compiler and the simulator. Explicit
conversions of signals from analog to digital and vice versa will be supported in this
language definition.



20 SIMULATION SPEEDUP

TECHNIQUES

20.1 Cycle-Based Simulation

The simulation of a system can be a time-consuming part of a project. Optimizations
to simulation algorithms can be performed on certain subsets of the HDL. One such
technique commonly used is known as cycle-based simulation. As seen in the
synthesis subset, the models written must follow a subset that describes a
synchronous system using the model of a Sagdeo machine. [Figure 12-2]. In such
cases, the activity in the simulator is only present on clock-edges. There are no other
types waits involved or synchronizations or delays. Thus, one can lump all clock-
based activity in one block of execution and perform an accelerated simulation by
removing the events altogether. Thus, a network data structure similar to one in
Figure 4-1 is created during compilation and one only has to perform evaluations
based on this data structure. On each clock edge, stimulus changes are captured in a
predetermined fashion and then applied to the circuit under simulation. On each net
or reg change arising from this stimulus change, propagation takes place according
to the compiled data structure as per connectivity of different nodes and evaluation
blocks without creation of any events.

In general, event creation and processing takes up 90% of the simulation cpu
time. With this method, when the input description is at RTL level and follows the
basic synthesis subset model, one can achieve simulation speedup of an order of
magnitude. However, the stimulus is still being generated at the higher level and the
simulator must have the capacity to handle both kind so simulations together and
interface the two algorithms correctly without losing the speedup achieved in the
RTL sections.

The subset supported by cycle based simulators closely matches the subset of
synthesis. Refer to Chapter 13 and Appendix C for details on modeling for
performance using cycle-based simulations. Again, individual tools may have certain



372 Chapter 20

limitations or additional features and refer to data-sheet of your simulator for any
such features.

20.2 2-State Versus 4-State Simulations

Verilog regs and nets are 4-stated variables. However, in a fully debugged
simulation, one does not expect x’s or z’s and if they appear then they are don't care
conditions. For such a simulation, one can run the simulator in 2-state whereby only
0 and 1 values are needed for all evaluations of the system. This can result in some
speedup when performing large-scale regression testing done extensively as the
design is being completed and taped out. This method can be effectively applied for
such cases. A good Verilog simulator should provide a compile time option to
perform such type of optimized simulation.

20.3 Compiled, Native Code, and Interpretive Simulations

An interpretive simulator compiles the Verilog code into internal data structure that
may be then used for step-by step simulation which can be debugged directly at the
source level. This kind of simulation is ideally suited during module by module
development of a design. As the design gets larger and the simulation initialization
and test-sequence takes longer CPU times, one can optimize the simulation by
compiling down the debugged modules into either binary code via C code translation
and compilation or directly generating native code. The step of producing C code and
then compiling this takes longer compilation times at the benefit of faster run-time.
Direct generation of native code typically helps in speeded compilation and may even
have some small advantage in simulation. However, C compilers have several
optimizing cod generation algorithms which may benefit the run-time and the native
code generator must match the quality of optimized code—especially when
pipelining and other such processor dependent code-optimizations are involved.

20.4 Parallel Processors and Multi-Threaded Simulators

The parallel processing machines can speed up certain applications upto the number
of processors and at times, more if the caches are local to each processor and the
simulations get the advantages of this configuration. For multi-processing
applications, a simulator must be rewritten with creation of threads such that all the
processors get the computations in simulation done in parallel(generally with a
shared memory). Some of the best results can be obtained again for code that has
large number of processing done at the same time. The RTL code that is based on a
single event in a cycle based simulation may not be vectorized so well although
benefits in evaluating blocks in parallel may be seen. Events tend to be more
naturally threaded and simulations with large number of events at the same time can
run with speedups upto n times. Large gate-level or switch-level simulations can also
run well in parallel in an algorithm whereby each thread creates its own events in a
thread-based event queue. While running for the R1000 processor simulations on
Silicon Graphics Challenge machines upto 16 processors, 10-fold speedups were
obtained. Up to eight or less processors the speedup was more than the number of
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processors since the local caches were now large enough to hold all the data and
consequently the speed was multiplied more than just the number of processors. In
general, as describes in the next section, management of cache and memory could be
as important as managing the parallelism amongst threads in simulation runs.

20.5 Usage of Caches and Other Memory to Achieve Speedup

The typical simulations of a large design tends to run on certain parts of the design
for certain item and then move onto other parts when the boundaries across higher
level blocks get triggered. In such cases, the caches can hold the data on which the
simulations run for longer time providing simulation speedup. Thus, managing the
application of stimulus and locality of reference are good techniques of managing
your simulation runs. The random pattern application really may test the circuit well
but will not have the locality of reference that a well-developed systemic test-suite
could provide.

Virtual memories typically tend to be too slow for simulations as the activity rate I
every high, that is, this is a CPU and memory-access intensive application. Thus,
providing real memory greater than the simulator would need for running the system
is a must for simulation runs to complete in reasonable times. The needs of memory
vary for different tools and should be looked at while evaluating the tool that will be
used for a design project.

20.6 Distributed Simulations Over a Network of Workstations

Large designs and larger regression test-suites can be run on a distributed system by
partitioning the tests in an easier fashion and partitioning the design in cases the
design grows beyond the memory capacity of individual workstations.
Communicating over a distributed network for events could be slow and thus
partitioning of design must be done such that very few pieces of data are exchanged
amongst a distributed system. All the tests must go through similar initialization of
the circuit and then apply individual tests when test-data is partitioned. Tools are
available to manage the distributed runs of a system which can schedule the runs, do
the initial distribution of data, help in synchronization and in finally gathering the
result together.

20.7 C Code Versus HDL Code

For hardware-software codesign, the full-detailed synthesizable HDL models of the
system could be slow in terms of number of cycles needed for software to be run on
the hardware to be built ahead of the time to speedup the final system delivery. In
such cases, C code is widely used to model the high-level processor, cache and other
system models. However, the modeling in Verilog using higher levels of abstractions
is a viable and preferred alternative. As seen in the cache design examples of chapter
11, the behavioral models run order of magnitude faster than the RTL models as the
details of synchronization are absent in these models. This level of abstraction can be
further raised and cycle-based simulations can still be used to get performance
comparable to C models and accuracy and model-development far better. The core or
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IP developers face this question more than others and must address this in this
direction. Higher level features are also being added to Verilog HDL in the 1364-98
proposed in IVC 97.

20.8 File Management in Simulation

Reading large set of patterns and writing large set of data can be quite time-
consuming especially in a networked file system. Files must be locally present on a
workstation in a distributed system for the speed issues. On a single workstation,
reading and writing must be minimized especially within an event loop. This can be
achieved by reading large chunks of data in a cached manner and similarly for
writing, local caching must be done. The output dumpfiles in the format that Verilog
provides could be long and several compression techniques are available either to be
implemented as user-defined tasks or via tools such as Veritools waveform processor.



A FORMAL SYNTAX

DEFINITION FOR
VERILOG HDL

The following is reproduced from IEEE std 1364-1995 Verilog Hardware
Description Language Reference Manual, Copyright 1995 by the Institute of
Electrical and Electronics Engineers, Inc. The IEEE disclaims any responsibility or
liability resulting from the placement and use of the publication. This information is
reprinted with the permission of the IEEE.

The following table summarizes the format of the formal syntax descriptions.

Definition of Items in the Formal Syntax Specifications

This is fixed for some bugs from the orginal specification.



A.1 Source Text

source_text
::= {description}

description
::= module_declaration
| UDP_declaration

module_declaration
::= module_keyword module_identifier [list_of_ports]

{module_item}
endmodule

module_keyword
::= module | macromodule

list_of_ports
::=( port {,port })

port
::= [port_expression]
| .port_identifier ([port_expression])

port_expression
::= port_reference
| { port_reference ,port_reference }

port_reference
::=port_identifier
| port_identifier[ constant_expression ]
| port_identifier [ msb_constant_expression :lsb_constant_expression ]

module_item
::= module_item_declaration
| gate_instantiation
| udp_instantiation
| module_instantiation
| parameter_override
| continuous_assign
| specify_block
| initial_statement
| always_statement

module_item_declaration
::= parameter_declaration
| input_declaration
| output_declaration
| inout_declaration
| net_declaration
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| reg_declaration
| time_declaration
| realtime_declaration
| integer_declaration
| real_declaration
| event_declaration
| task_declaration
| function_declaration

A.2 Declarations

parameter_declaration
::=  parameter list_of_param_assignments;

list_of_param_assignments
::=param_assignment {,param_assignment}

param_assignment
::=identifier = constant_expression

input_declaration
::=  input [range] list_of_port_identifiers ;

output_declaration
::=  output [range] list_of_ port_ identifiers;

inout_declaration
::=  inout [range] list_of_ port_ identifiers;

net_declaration ::= net_type [expandrange] [delay] list_of_net_ identifiers;
| trireg [charge_strength] [expandrange] [delay]
list_of_ net_ identifiers; | NET_TYPE [drive_strength] [expandrange] [delay]

list_of_net_decl_assignments;
list_of_net_ identifiers ::= net_ identifier , { net_ identifier }
net_type ::=: wire | tri | tri1 | supply0 | wand | triand | tri0 | supply1 | wor | trior | trireg

expandrange
::= range
| scalared range
| vectored range

reg_declaration
::= reg [range] list_of_register_ identifiers;

list_of_ register_ identifiers ::= register _ identifier, {register _ identifier}
time_declaration

::=  time list_of_register_ identifiers;

integer_declaration
::=  integer list_of_register_ identifiers;

real_declaration
::=  real list_of_ real_identifiers;
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list_of_real_identifiers
::= real_ identifier , { real_ identifier }

event_declaration
::= event event_identifier{ event_identifier} ;

task _declaration
::=  task task_identifier;

{task_item_declaration}
statement_or_null

endtask

task_item_declaration
::= block_item_declaration
| input_declaration
| output_declaration
| inout_declaration

function_declaration
::=  function [range_or_type] function_identifier;

function_item_declaration
statement

endfunction

function_item_declaration
::= block_item_declaration
| input_declaration

range_or_type
::= range
| integer
| function_identifier
::= identifier

block_item_declaration
::= parameter_declaration
| reg_declaration
| time_declaration
| integer_declaration
| real_declaration
| realtime_declaration
| event_ declaration

continuous_assign
::=  assign [drive_strength] [delay] list_of_assignments ;
| net_type [drive_strength] [expandrange] [delay] list_of_assignments ;

parameter_override
::=defparam list_of_param_assignments ;
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list_of_register_variables
::=register_identifier { ,register_identifier }

register_variable
::= register_identifier
| memory_identifier [ constant_expression : constant_expression ] register_identifier
::= memory–identifier
::= event_identifier

charge_strength
::= ( small)
| (medium)
| (large)

drive_strength
::= (strength0 , strength1)
| (strength1, strength0)

strength0 is one of the following keywords:
supply0 strong0 pull0 weak0 highz0

strength1 is one of the following keywords:
supply1 strong1 pull1 weak1 highz1

range
::= [ msb_constant_expression : lsb_constant_expression ]

list_of_net_decl_assignments
::= net_decl_assignment{ ,net_decl_assignment}

net_decl_assignment
::=net_identifier = expression

A.3 Primitive Instances

gate_instantiation
::=n_input_gatetype [drive_strength] [delay2] n_input_gate_instance

{, n_input_gate_instance};
| n_output_gatetype[drive_strength] [delay2] n_output_gate_instance

{ , n_output_gate_instance};
| n_enable_gatetype [drive_strength] [delay3] enable_gate_instance

{ ,enable_gate_instance};
| mos_switchtype [delay3] mos_switch_instance{ , mos_switch _instance};
| pass_switchtype [delay3] pass_switch_instance{ , pass_switch_instance} ;
| pass_en_switchtype [delay3] pass_en_switch_instance{, pass_en_switch _instance} ;
| cmos_switchtype [delay3] cmos_switch_instance{, cmos_switch _instance};
| pullup [pullup_strength] pull-gate_instance{ , pull_gate_instance} ;
| pulldown [pulldown_strength] pull-gate_instance{ , pull_gate _instance} ;
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n_input_gate_instance ::= [name_of_ gate_instance] (output_terminal, input_terminal{,
input_terminal});

n_output_gate_instance ::= [name_of_ gate_instance] (output_terminal, {,output_terminal },
input_terminal, input_terminal});

enable_gate_instance ::= [name_of_ gate_instance] (output_terminal, input_terminal{,
input_terminal, enable_terminal});

mos_switch_instance ::= [name_of_ gate_instance] (output_terminal, input_terminal,
enable_terminal});

pass_switch_instance ::= [name_of_ gate_instance] (inout_terminal, inout_terminal,
enable_terminal});

pass_enable_switch_instance ::= [name_of_ gate_instance] (inout_terminal, inout_terminal,
enable_terminal);

cmos_ switch_ instance ::= [name_of_ gate_instance] (output_terminal,
input_terminal,ncontrol_terminal, pcontrol_terminal);

pull_ gate_ instance ::= [name_of_ gate_instance] (output_terminal)
name_of_ gate_instance ::= gate_instance_identifier[range]
pullup_strength ::= (strength0, strength1)

| (strength1, strength0)
| (strength0)

input_terminal ::= scalar_expression
enable_terminal ::= scalar_expression
ncontrol_terminal :: = scalar_expression
pcontrol_terminal :: = scalar_expression
output_terminal ::= terminal_identifier | terminal_identifier[constant_expression]
inout_terminal ::= scalar_expression

n_input_gatetype ::=
and | nand | or | nor | xor | xnor

n_output_gatetype::=buf | not
enable_gatetype ::=bufif0 | bufif1 | notif0 | notif1
mos_switch_type ::=nmos | rnmos | pmos | rpmos
cmos_switch_type ::= cmos | rcmos
pass_switch_type ::= tran | rtran
pass_switch_type ::= tranif0 | rtranif0 | tranif1 | rtranif1

delay3 ::= #delay_value | #( delay_value [,delay_value [,delay_value]])
delay2 ::= #delay_value | #( delay_value [,delay_value])
delay_value

::= unsigned_number
| parameter_identifier

| (mintypmax_expression [,mintypmax_expression] [,mintypmax_expression])

A.4 Module Instantiations

module_instantiation
::= module_identifier [parameter_value_assignment]

module_instance{ ,module_instance}

parameter_value_assignment
::= # (expression{ ,expression})
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module_instance
::= name_ of_ instance ([list_of_module_connections])

list_of_module_connections
::= ordered_port_connection{ , ordered _port_connection}
| named_port_connection{ ,named_port_connection}

ordered _port_connection
::= [expression]

named_port_connection
::= . port_identifier (expression )

A.5 UDP Declaration and Instantiation

udp_declaration
::=  primitive udp_identifier (udp_port_list);

udp_port_declaration {udp_port_declaration}
udp_body

endprimitive
udp_port_list ::= output_port_identifier, input_port_identifier {, input_port_identifier }

udp_port_declaration ::=
output_declaration
| reg_declaration
| input_declaration

udp_body ::= combination_body | sequential_body

combination_body ::= table combinational_entry { combinational_entry } endtable

sequential_body ::= [UDP_initial_statement] table sequential_entry { sequential_entry }
endtable

UDP_initial_statement
::=  initial output_terminal_name = init_val;

init_val
::= 1'b0
| 1'b1
| 1'bx
| 1'bX
| 1'B0
| 1'B1
| 1'Bx
| 1'BX
| 1
| 0
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output_terminal_name
::= variable

combinational_entry
::= level_input_list: output_symbol;

sequential_entry
::= seq_input_list: current_state : next_state ;

seq_input_list
::= level_input_list
| edge_input_Iist

level_input_list
::= level_symbol{level_symbol}

edge_input_list
::= {level_symbol}edge_indicator {level_symbol}

edge_indicator}
::= (level_symbol level_symbol)
| edge_symbol

current_state
::=level_symbol

next_state
::=output_symbol
| -

output_symbol is one of the following characters:
0 1 x X

level_symbol is one of the following characters:
0 1 x X ? b B

edge_symbol is one of the following characters:
r R f F p P n N *

udp_instantiation
::=udp_identifier [drive_strength] [delay2]
udp_instance{ ,udp_instance} ;

udp_instance
::= [name_of_udp_instance] (output_port_connection, input_port_connection

{output_port_connection ,input_port_connection} )
::= identifier [range]

name_of_udp_instance::= udp_instance_identifier[range]
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A.6 Behavioral Statements

initial_statement
::=  initial statement

always_ statement
::=  always statement

statement_or_null
::= statement
|;

statement
::=blocking_assignment;
| non-blocking_assignment;
| procedural_continuous_assignment
| procedural_timing_control_assignment
| conditional_statement
| case_statement
| loop_statement
| wait_statement
| disable_statement
| event_trigger
| seq_block
| par_block
| task_enable
| system_task_enable

procedural_timing_control_assignment : :=
delay_or_event_control statement_or_null

procedural_continuous_assignment::=
assign reg_assignment |
deassign reg_1value
force reg_assignment
release reg_1value
release net_lvalue

conditional_statement ::=
if (expression) statement_or_null

| if (expression) statement_or_null else statement_or_null

case_statement::=
case (expression) case_item {case_item} endcase
| casez (expression) case_item {case_item} endcase
| casex (expression) case_item {case_item } endcase

loop_statement::=
forever statement
| repeat (expression) statement
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| while (expression) statement
| for (assignment; expression ; assignment) statement

wait_statement::=
wait (expression ) statement_or_null

event_trigger ::=
-> event_identifier;

blocking_assignment
::= reg_lvalue = [delay_or_event_control] expression ;

non-blocking_assignment
::= lvalue = expression
| lvalue = delay_or_event_control expression ;

delay_or_event_control
::= delay_control
| event_control
| repeat (expression) event_control

case_item
::=expression{ ,expression) : statement_or_null
| default: statement_or_null

seq_block
::=  begin{ statement} end
| begin : block_identifier{ block_item_declaration}{ statement} end

par_block
::=  fork{ statement} join
| fork : block_identifier{ block_item_declaration}{ statement} block_identifier

{ statement} join

block_declaration
::= parameter_declaration
| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| event_declaration

task_enable
::=task_identifier
| task_identifier (expression{ ,expression});

system_task_enable
::= system_task_name;
| system_task_name( expression{ ,expression});

system_task_name
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::= $system_identifier (Note: the $ may not be followed by a space.)

A.7 Specify Section

specify_block
::=  specify{ specify_item} endspecify

specify_item
::= specparam_declaration
| path_declaration
| system_timing_check

path_declaration
::= simple_path_declaration

| edge_sensitive_path_declaration
| state_dependent_path_declaration

specparam_declaration
::=  specparam list_of_specparam_assignments;

list_of_specparam_assignments
::=specparam_assignment{, specparam_assignment}

specparam_assignment
::= specparam_identifier=constant_expression
| pulse_control_specparam

pulse_control_specparam ::=
PATHPULSE$ = (reject_limit_value [, error_limit_value]);
|
PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor =

(reject_limit_value [, error_limit_value]);

limit_value::=constant_mintypmax_expression;
simple_path_declaration

::= parallel_path_description = path_delay_value ;

parallel_path_description
::= (specify_input_terminal_descriptor[polarity_operator] =>

specify _output_terminal_descriptor)

full_path_description::=
input_identifier |
output_identifier[ constant_expression]
output_identifier[ msb_expression: lsb_constant_expression]

specify_output_terminal_descriptor::=
output_identifier
| output_identifier[ constant_expression]
| output_identifier[ msb_constant_expression : lsb_constant_expression]
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input_identifier ::= input_port_identifier |  inout_port_identifier
polarity_operator ::= + | -
path_delay_value ::=

list_of_path_delay_expressions
| (list_of_path_delay_expressions)

list_of_path_delay_expressions::=
t_path_delay_expression
| trise_ path_delay_expression, tfall_ path_delay_expression

| (list_of_path_inputs{ } list_of_path_outputs )

list_of_path_inputs
::= specify_input_terminal_descriptor{ ,specify_input_terminal_descriptor}

list_of_path_outputs
::= specify_output_terminal_descriptor{ ,specify_output_terminal_descriptor}

specify_input_terminal_descriptor
::= input_identifier
| input_identifier [ constant_expression ]
| input_identifier [ constant_expression : constant_expression ]

specify_output_terminal_descriptor
::= output_identifier
| output_identifier [ constant_expression ]
| output_identifier [ constant_expression : constant_expression ]

input_identifier
::= the IDENTIFIER of a module input or inout terminal

output_identifier
::= the IDENTIFIER of a module output or inout terminal.

path_delay_value
::= t_path_delay_expression
| (trise_path_delay_expression, tfall_path_delay_expression)
| (trise_path_delay_expression, tfall_path_delay_expression,

tz_path_delay_expression)
| (t01_path_delay_expression, t10_path_delay_expression,

t0z_path_delay_expression, tz1_path_delay_expression,
t1z_path_delay_expression, tz0_path_delay_expression)

| (t01_path_delay_expression, t10_path_delay_expression,
t0z_path_delay_expression, tz1_path_delay_expression,
t1z_path_delay_expression, tz0_path_delay_expression,
t0x_path_delay_expression, tx1_path_delay_expression,
t1x_path_delay_expression, tx0_path_delay_expression,
txz_path_delay_expression, tzx_path_delay_expression)
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path_delay_expression
::= constant_mintypmax_expression

system_timing_check
::=$setup( timing_check_event, timing_check_event,

timing_check_limit,[notify_register]);
| $hold( timing_check_event, timing_check_event, timing_check_limit [,notify_register]);
| $period( controlled_timing_check_event, timing_check_limit [,notify_register]);
| $width( controlled_timing_check_event, timing_check_limit [

,constant_expression,notify_register]);
| $skew( timing_check_event, timing_check_event, timing_check_limit, [,notify_register]);
| $recovery( controlled_timing_check_event,

timing_check_event,
timing_check_limit [,notify_register]);

| $setuphold( timing_check_event, timing_check_event,
timing_check_limit, timing_check_limit [,notify_register]);

edge_sensitive_path_declaration::=
parallel_edge_sensitive_path_declaration = path_delay_value |
full_edge_sensitive_path_description = path_delay_value

parallel_edge_sensitive_path_description ::=
([edge_identifier] )specify_input_terminal_descriptor =>

specify_output_terminal_descriptor [polarity_operator]:
data_source_expresssion))

full_edge_sensitive_path_description ::=
([edge_identifier]list_of_path_inputs*>

list_of_path_outputs[polarity_opertor]: data_source_expression))

data_source_expression ::= expression
edge_identifier ::= posedge | negedge
state_dependent_path_declaration ::=

if (conditional_expression) simple_path_declaration
if (conditional_expression) edge_sensitive _path_declaration
ifnone simple_path_declaration

timing_check_event
::= [timing_check_event_control] specify_terminal_descriptor |

&&& [timing_check_condition]

specify_terminal_descriptor
::= specify_input_terminal_descriptor
|specify_output_terminal_descriptor

controlled_timing_check_event
::= timing_check_event_control specify_terminal_descriptor

&&& [timing_check_condition]
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timing_check_event_control
::= posedge
| negedge
| edge_control_specifier

edge_control_specifier
::=  edge [{ edge_descriptor,edge_descriptor}]

edge_descriptor
::=01
| 10
| 0x
| x1
| 1x
| x0

timing_check_condition
::= scalar_timing_check_condition
| ( scalar_timing_check_condition )

scalar_timing_check_condition
::= expression
| ~ expression
| expression = = scalar_constant
| expression = = = scalar_constant
| expression != scalar_constant
| expression != = scalar_constant

scalar_expression
A scalar expression is a one bit net or a bit-select of an expanded vector net.

timing_check_limit
::= expression

scalar_constant
::= 1'b0
| 1'b1
| 1'B0
| l'Bl
| 'b0
| 'bl
| 'B0
| 'Bl
| 1
| 0

notify_register
::= identifier
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level_sensitive_path_declaration
::= if (conditional_port_expression)

(specify_input_terminal_descriptor [polarity_operator] =
specify_output_terminal_descriptor) = path_delay_value;

| if (conditional_port_expression)
(list_of_path_inputs [polarity_operator] { }
list_of_path_outputs) = path_delay_value;

(Note: The following two symbols are literal symbols, not syntax description
conventions:)

} =

conditional_port_expression
::= port_reference
| unary_operatorport_reference
| port_referencebinary_operatorport_reference

polarity_operator
::= +
| -

edge_sensitive_path_declaration
::= if [(expression)] [(edge_identifier]

specify _input_terminal_descriptor =
(specify_output_terminal_descriptor [polarity_operator]
: data_source_expression)) = path_delay_value;

| if [(expression)] [(edge_identifier]
specify_input_terminal_descriptor{ }
(list_of_path_outputs [polarity_operator]
: data_source_expression)) =path_delay_value;

data_source_expression
Any expression, including constants and lists. Its width must be one bit or
equal to the destination's width. If the destination is a list, the data
source must be as wide as the sum of the bits of the members.

edge_identifier
::= posedge
| negedge

sdpd
::=if(conditional_expression)path_description=path_delay_value;

sdpd_conditional_expresssion
::=expressionB INARY_OPERATOR expression
|UNARY_OPERATOR expression
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A.8 Expressions

net_lvalue
::= net_dentifier
| net_identifier [ expression ]
| net_identifier [constant_expression : constant_expression ]
| net_concatenation

reg_lvalue ::=
reg_identifier
| reg_identifier[expression]
| reg_identifier[msb_constant_expression: lsb_constant_expression]
|  reg_concatenation

constant_expression
::= constant_primary
| unary_operator constant_primary
| constant_expression binary_operator constant_expression
| constant_expression ? constant_expression : constant_expression
| string

constant_primary ::=
number

| parameter_identifier
| constant_concatenation
| constant_multiple_ concatenation

constant_mintypmax_expression ::=
constant_expression
| constant_expression : constant_expression : constant_expression

unary_operator ::=
+ | - | ! | ~ | | ~& | | | ~ | | ̂  | ~^ | ̂  ~

mintypmax_expression
::= expression
| expression : expression : expression

expression
::= primary
| unary_operator primary
| expression binary_operator expression
| expression question_mark expression : expression
| string

binary_operator ::=

QUESTION_MARK is ? (a literal question mark).
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STRING is text enclosed in "" and contained on one line.

primary
::= number
| identifier
| identifier [ expression ]
| identifier [ msb_constant_expression : lsb_constant_expression ]
| concatenation
| multiple_concatenation
| function_call
| ( mintypmax_expression)

number
::= decimal_number
| octal_number
| binary_number
| hex_number
| real_number

real_number ::=
[sign] unsigned_number.unsigned_number
[sign] unsigned_number.[.unsigned_number]e[sign]unsigned_number
[sign]  unsigned_number.unsigned_number

decimal_number ::=
[sign] unsigned_number |
[size]  decimal_base unsigned_number

binary_number ::= [size] binary_base binary_digit { _ | binary_digit}
octal_number ::= [size] octal_base octal_digit { _ | binary_digit}
hex_number ::= [size] hex_base hex_digit { _ | hex_digit}
sign ::= + | -
size ::= unsigned_number
unsigned_number ::= decimal_digit { _ | decimal_digit}
decimal_base ::= ‘d | ‘D
binary_base ::= ‘b | ‘B
octal_base ::= ‘o | ‘O
decimal_number

::= A number containing a set of any of the following characters, optionally preceded by +
or-

0|1|2|3|4|5|6|7|8|9_

hex_digit ::=0|1|2|3|4|5|6|7|8|9|a|b|c|d|e|f |A|B|C|D|E|F|x|X|z|Z

BASE is one of the following tokens:
'b 'B 'o 'O 'd 'D 'h 'H

concatenation
::= { expression{ ,expression} }
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multiple_concatenation
::= { expression { expression{ ,expression} } }

function_call
::= function_identifier ( expression{ , expression})
| system_function_identifier ( expression{ ,expression})
| system_function

system function_identifier
::=_$identifier

A.9 General

comment
::= short_comment
| long_comment

short_comment
::= // comment_text END-OF-LINE

long_comment
::={ /* comment_text */

comment_text
::= { Any_ASCII_character }

identifier::=
simple_identifier |
escaped_identifier

simple_identifier ::= [a-zA-Z[a-zA-Z_$]
escaped_identifier ::= \{Any_ASCII_character_except_white_space} white_space
white_space ::= space | tab | newline

NOTE - The period in identifier may not be preceded or followed by a space.

{.identifier}
(note: the period may not be preceded or followed by a space.)

identifier
An identifier is any sequence of letters, digits, dollar signs ($), and
underscore (_) symbol, except that the first must be a letter or the
underscore; the first character may not be a digit or $. Upper and lower case
letters are considered to be different. Identifiers may be up to 1024

characters long. Some Verilog-based tools do not recognize {identifier}characters
beyond the 1024th as a significant part of the identifier. Escaped

identifiers start with the backslash character (\) and may include any
printable ASCII character. An escaped identifier ends with white space. The
leading backslash character is not considered to be part of{ the} identifier. }delay
::=# number
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| # identifier
|  #  (mintypmax_expression  [,mintypmax_expression]

[,mintypmax_expression])

delay_control
::=# number
| # identifier
| #  ( mintypmax_expression )

event_control
::= @ identifier
| @ (event_expression)

event_expression
::= expression
| posedge scalar_event_expression
| negedge scalar_event_expression
| event_expression or event_expression

scalar_event_expression
Scalar event expression is an expression that resolves to a one bit value.
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B VERILOG SUBSET FOR

LOGIC SYNTHESIS

B.1 Introduction

The following pages describe the Verilog language support for logic synthesis in a
formal manner.

B.2 Syntax for Verilog for Logic Synthesis

The following pages describe the Verilog language support for logic synthesis in a
formal manner.

The syntax definition uses the same notation used for describing the full language
in the prior appendix.

We also define the keywords constructs that are not supported in logic synthesis
tools in the later sections of this appendix.

Syntax

This section presents the syntax of the supported Verilog language.

BNF Syntax

source_text
::= {syn_description}

syn_description
::= syn_module_declaration

syn_module_declaration
::=module_keyword module_identifier [list_of_ports]

{syn_module_item}
endmodule
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module_keyword
::= module | macromodule

name_of_module
::= IDENTIFIER

list_of_ports
::=( port {,port})
|( )

port
::= [port_expression]
| .port_identifier ( [port_expression] )

port_expression
::= port_reference
| { port_reference {, port_reference} }

port_reference
::=port_identifier | port_identifier [ expression ]
|port_identifier [ expression : expression]

syn_module_item
::= parameter_declaration
| input_declaration
| output_declaration
| inout_declaration
| net_declaration
| reg_declaration
| integer_declaration
| syn_gate_instantiation
| module_instantiation
| continuous_assign
| function_declaration
| syn_always_statement

function_declaration
::= function [range]function_identifier;

{function_item_declaration}
syn_statement

endfunction

function_item_declaration
::= parameter_declaration
| input_declaration
| reg_declaration
| integer_declaration
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syn_always_statement
::= always @ ( identifier or identifier )
| always @ ( posedge identifier )
| always @ ( negedge identifier )
| always @ ( egde or edge or ... )

edge
::= posedge identifier
| negedge identifier

parameter_declaration
::= parameter [range] list_of_assignments ;

input_declaration
::= input [range] list_of_variables ;

output_declaration
::= output [range] list_of_variables ;

inout_declaration
::= inout [range] list_of_variables;

syn_net_declaration
::= syn_NET_TYPE [charge_strength] [expandrange] [delay]

list_of_variables;
| NET_TYPE [drive_strength] [expandrange] [delay]

list_of_assignments;

syn_NET_TYPE
::=wire
| wor
| wand
| tri

expandrange
::= range

| scalared range

reg_declaration
::= reg [range] list_of_register_variables ;

integer_declaration
::= integer list_of_integer_variables;

continuous_assign
::= assign [drive_strength] [delay]

list_of_assignments;

| vectored range
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list_of_variables
::=variable_identifier {,variable}

list_of_register_variables
::= register_variable {, register_variable)

register_variable
::= IDENTIFIER

list_of_integer_variables
::= integer_variable {, integer_variable}

integer_variable
::= IDENTIFIER

charge_strength
::= ( small )
| ( medium )
| ( large )

drive_strength
::= ( STRENGTH0, STRENGTH1 )
| ( STRENGHT1 , STRENGTH0 )

STRENGTH0
::= supply0
| strong0
| pull0
| weak0
| highz0

STRENGTH1
::= supply1
| strong 1
| pull1
| weak1
| highz1

range
::= [ expression : expression ]

list_of_assignments
::= assignment {, assignment}

syn_gate_instantiation
::= syn_GATETYPE [drive_strength] [delay]

gate_instance {, gate_instance};
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syn_GATETYPE
::=and
| nand
| or
| nor
| xor
| xnor
| buf
| not

gate_instance
::=n_input_gatetype [drive_strength] [delay2] n_input_gate_instance{ ,

n_input_gate_instance};
| n_output_gatetype[drive_strength] [delay2] n_output_gate_instance{ ,

n_output_gate_instance};

n_input_gate_instance ::= [name_of_ gate_instance] (output_terminal,
input_terminal{, input_terminal});

n_output_gate_instance ::= [name_of_ gate_instance] (output_terminal,
{,output_terminal}, input_terminal, input_terminal});

output_terminal
::= identifier
| expression

input_terminal
::= identifier
| expression

module_instantiation
: :=module_identifier  [parameter_value_assignment]

module_instance {, module_instance}

parameter_value_assignment
::= #( expression {,expression})

module_instance
::= module_instance_identifier ( [list_of_module_connections] )

list_of_module_connections
::= ordered_port_connection{, ordered _port_connection}
| named_port_connection{ ,named_port_connection}

ordered _port_connection
::= [expression]

named_port_connection
::= . port_identifier (expression)
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syn_statement
::= assignment
| if ( expression )

statement
| if ( expression )

statement
else

statement
| case ( expression )

case_item+
endcase

| casex (expression ) 
case_item+

endcase
| casez ( expression )

case_item+
endcase

| for ( assignment; expression ; assignment )
statement

| seq_block
| disable IDENTIFIER;
| forever statement
| while ( expression ) statement

statement
::= statement
|   ;

assignment
::= 1value = expression

case_item
::= expression {,expression} : statement
| default: statement
| default statement

seq_block
::= begin

{statement}
end

| begin :block_identifier {block_declaration}
{statement}

end

block_declaration
::= parameter_declaration
| reg_declaration
| integer_declaration
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1value
::= IDENTIFIER
| IDENTIFIER [ expression ]
| concatenation

expression
::= primary
| UNARY_OPERATOR primary
| expression BINARY_OPERATOR
| expression [expression: expression]

UNARY_OPERATOR
::= !
| ~
| &
| ~&
| |
| ~|
| ^
| ~^
| -
| +
| -
| }
| /

|  &&
| !=

| %

primary
::= number
I identifier
I identifier [ expression ]
| identifier [ expression: expression ]
| concatenation
| multiple_concatenation
| function_call
| (expression)

| ==

|  | | 
|

| =
| &
| |
|
|

|
| =
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number
::= NUMBER
| BASE NUMBER
| SIZE BASE NUMBER

Number

A number can have any of the following characters:
0123456789abcdefxzABCDEFXZ

Size

::='b
|'B
|'o
|'O
|'d
|'D
|'h
|'M

Size

Any number of the following digits: 0123456789

concatenation
::= { expression {,expression} }

multiple_concatenation
::= { expression { expression {,expression}

identifier
An identifier is any sequence of letters, digits, and the under- score character (_), where the
first character is a letter or underscore. Uppercase and lowercase letters are treated as
different characters. Identifiers can be any size and all characters are significant. Escaped
identifiers start with the backslash character (\) and end with a space. The leading backslash
character (\) is not part of the identifier. Use escaped identifi- ers to include any printable
ASCII {characters}in}an }identifier.

delay
::= # NUMBER
| # identifier
| # ( expression {,expression} )
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Compiler Directives

The following compiler directives are supported:
`include
`define

B.3 Ignored Constructs for Logic Synthesis

B.3.1 Compiler Directives

The following compiler directives are ignored (only useful for simulation):

`accelerate
`celldefine
` default_net_type
`endcelldefine
`endprotect

` expand_vectornets
`noaccelerate
`noexpand_vectornets`noremove_netnames
`nounconnected_drive ̀ protect
` remove_netnames
`resetall
`timescale

`unconnected_drive

B.3.2 Verilog System Functions

Verilog system function and task names start with a dollar sign ($).
These functions and tasks are parsed and ignored by HDL Compiler.
Examples of these are:

$monitor
$display
$dumpfile, etc.

B.4 Unsupported Verilog Language Constructs

Some Verilog constructs are not supported in the synthesis subset.
These constructs are described in this section.

B.4.1 Unsupported Definitions and Declarations

primitive definition

time declaration

event declaration

triand, trior, tri1, tri0, and trireg net types

Ranges and arrays for integers
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Unsupported Statements

defparam statement
initial statement

repeat statement

delay control

event control

wait statement
fork statement

deassign statement

force statement

release statement

Assignment statement with a variable used as a bit-select on the left
side of the equal sign

Unsupported Operators

Case equality and inequality operators (=== and !==)

Division and modulus operators for variables

Unsupported Gate-Level Constructs

nmos, pmos, cmos, rnmos, rpmos, rcmos, pullup, pulldown,
tranif0, tranif1, rtran, rtranif0, and rtranif1 gate
types

Unsupported Miscellaneous Constructs
Hierarchical names within a module

`ifdef, ̀ end if and `else compiler directives

B.5 Verilog Keywords Set for Logic Synthesis

always and assign begin
buf bufif0 bufif1 case
casex casez cmos deassign
default defparam disable else
end case endunction endmodule
endprimitive endtable endtask event
for force forever fork
function highz0 highz1 if
initial inout input integer
join large medium module
nand negedge nmos nor
not notif0 notif1 or
output parameter pmos posedge
primitive pulldown pullup pull0
pull1 rcmos reg release
repeat rnmos rpmos rtran
rtranif0 rtranif1 scalared small
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strong0 strong1 supply0 supply1
supply1 table task time
tran tranif0 tranif1 tri
triand trior trireg tri0
tri1 vectored wait wand
weak0 weak1 while wire
wor xnor xor



C PROGRAMMING
LANGUAGE INTERFACE (PLI)

Header File - veriuser.h

/*****************************************************************************

* veriuser.h
*

* IEEE 1364 1995 Verilog HDL Programming Language Interface (PLI).
*

* This file contains the constant definitions, structure definitions, and
* routine declarations used by the Verilog PLI procedural interface TF
* task/function routines.

*
* The file should be included with all C routines that use the PLI TF
* routines.
This file is annotated and contains explanations f the routines , data structures and the
parameters */
#ifndef VERIUSER_H
#define VERIUSER_H

/*-
- ----- definitions [of constants] -----
*/
#define true 1
#define TRUE 1
#define false 0
#define FALSE 0
#define bool int

/*------ - --- -------- defines for error interception -------*/
#define ERR_MESSAGE 1
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#define ERR_WARNING 2
#define ERR_ERROR 3
#define ERR_INTERNAL 4
#define ERR_SYSTEM 5

/*----- - --- - values for reason parameter to misctf routines */
/* (misctf routines are typically called for value changes, but they can also be called for
various other reasons; most of these reasons

involve a coordinated activity on part of the user-defined C tasks and functions that is
consistent with the actions of the simulator.
The parts of simulation cycle or different activities involved in simulation include:

compilation
task or function call
save and restart of simulation state
disabling of a task
parameter value change
synchronizing the times of the C function and the simulation engine
completion if simulation
completion of compilation
enter interactive mode
force a value
release a value

)*/

#define reason_checktf 1
#define REASON_CHECKTF reason_checktf
#define reason_sizetf 2
#define REASON_SIZETFreason_sizetf
#define reason_calltf 3
#define REASON_CALLTF reason_calltf
#define reason_save 4
#define REASON_SAVE reason_save
#define reason_restart 5
#define REASON_RESTART reason_restart
#define reason_disable 6
#define REASON_DISABLE reason_disable
#define reason_paramvc 7
#define REASON_PARAMVC reason_paramvc
#define reason_synch 8
#define REASON_SYNCH reason_synch
#define reason_finish 9
#define REASON_FINISH reason_finish
#define reason_reactivate 10
#define REASON REACTIVATE reason_reactivate
#define reason_rosynch 11
#define REASON_ROSYNCH reason_rosynch
#define reason_paramdrc 15
#define REASON_PARAMDRC reason_paramdrc
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#define reason_endofcompile 16
#define REASON_ENDQFCOMPILE reason_endofcompile
#define reason_scope 17
#define REASON_SCOPE reason_scope
#define reason_interactive 18
#define REASON_INTERACTIVE reason_interactive
#define reason_reset 19
#define REASON_RESET reason_reset
#define reason_endofreset 20
#define REASON_ENDOFRESET reason_endofreset
#define reason_force 21
#define REASON_FORCE reason_force
#define reason_release 22
#define REASON_RELEASE reason_release
#define reason_startofsave 27
#define reason_startofrestart 28
#define REASON_MAX 28

/*-- types used by tf_typep() and expr type field in tf_exprinfo structure --*/
#define tf_nullparam 0
#define TF_NULLPARAM tf_nullparam
#define tf_string 1
#define TF_STRING tf_string
#define tf_readonly 10
#define TF_READONLY tf_readonly
#define tf_readwrite 11
#define TF_READWRITE tf_readwrite
#define tf_rwbitselect 12
#define TF_RWBITSELECT tf_rwbitselect
#define tf_rwpartselect 13
#defineTF_RWPARTSELECT tf_rwpartselect
#define tf_rwmemselect 14
#define TF_RWMEMSELECT tf_rwmemselect
#define tf_readonlyreal 15
#define TF_READONLYREAL tf_readonlyreal
#define tf_readwritereal 16
#define TF_READWRITEREAL tf_readwritereal

/*--------- types used by node_type field in tf_nodeinfo structure - -------*/
#define tf_null_node 100
#define TF_NULL_NODE tf_null_node
#define tf_reg node 101
#define TF_REG_NODE tf_reg_node
#define tf integer_node 102
#define TF_INTEGER_NODE tf_integer_node
#define tf_time_node 103
#define TF_TIME_NODE tf_time_node
#define tf_netvector_node 104
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#define TF_NETVECTOR_NODE tf_netvector_node
#define tf_netscalar_node 105
#define TF_NETSCALAR_NODE tf_netscalar_node
#define tf_memory_node 106
#define TF_MEMORY_NODE tf_memory_node
#define tf_real_node 107
#define TF_REAL_NODE tf_real_node
/*-- -*/
/* -------------- ---------- structure definitions --------- - -- -----------*/
/********** here we define the data structures used for exchanging information between the
simulator and the C application
*/

/*-- -*/
/*--- structure used with tf_exprinfo() to get expression information - - -*/
typedef struct t_tfexprinfo
{

short expr_type;
short padding;
struct t_vecval *expr_value_p;
double real_value;
char *expr_string;
int expr_ngroups;
int expr_vec_size;
int expr_sign;
int expr_lhs_select;
int expr_rhs_select;

}s_tfexprinfo, *p_tfexprinfo;

/*------- structure for use with tf nodeinfo() to get node information ------ */
typedef struct t_tfnodeinfo
{

short node_type;
short padding;
union
{

struct t_vecval *vecval_p;
struct t_strengthval *strengthval_p;
char *memoryval_p;
double *real_val_p;

} node_value;
char *node_symbol;
int node_ngroups;
int node_vec_size;
int node_sign;
int node_ms_index;
int node_ls_index;
int node_mem_size;
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int node_lhs_element;
int node_rhs_element;
int *node_handle;

}
s_tfnodeinfo, *p_tfnodeinfo;

/*------- -- --- -- -- data structure of vector values --- -- - - ---- --- /
-*/

typedef struct t_vecval
{

int avalbits;
int bvalbits;

} s_vecval, *p_vecval;

/*-------------- data structure of scalar net strength values ------  -- -*/

typedef struct t_strengthval
{

int strength0;
int strengthl;

} s_strengthval,*p_strengthval;
/*---- */
/*- - - - routine definitions - - -- --- -- ---*/
/*--___ ____ _ ___ */
/* -*/
#if defined(__STDC__) || defined(__cplusplus)

#ifndef PROTO_PARAMS
#definePROTO_PARAMS(params) params
#define DEFINED_PROTO_PARAMS
#endif
#ifndef EXTERN
#define EXTERN
#define DEFINED_EXTERN
#endif

#else

#ifndef PROTO_PARAMS
#define PROTO_PARAMS(params) (/* nothing */)
#define DEFINED_PROTO_PARAMS
#endif
#ifndef EXTERN
#define EXTERN extern
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#define DEFINED_EXTERN
#endif

#endif /* STDC */

/**** Following is a list of routines provided to the user for interacting with the simulator
using the io tasks and functions */
/** Explanation for each routine is provided prior to its prototype **/

/* Following are the input-output routines */
/* The following will display a value to multi-channel descriptor */
EXTERN void io_mcdprintf PROTO_PARAMS((int mcd,char *format,..));

/* The following will display to the standard output */
EXTERN void io_printf PROTO_PARAMS((char *format,..));

/** The following task will allow creating a plus argument to the Verilog Simulator to be
used in User application **/
EXTERN char *mc_scan_plusargs PROTO_PARAMS((char *plusarg));

/** Add 64 bit time variables */
EXTERN int tf_add_long PROTO_PARAMS((int *aof_lowtimel,
int *aof_hightimel,int lowtime2,int hightime2));

/*** Set the asynchronous (or misctf) calls to off for this C function**/
EXTERN int tf_asynchoff PROTO_PARAMS((void));

/* Set the asynchronous (or misctf) calls to on to this C function **/
EXTERN int tf_asynchon PROTO_PARAMS((void));

/* Clear all delays to be able to do zero delay simulation */
EXTERN int tf_clearalldelays PROTO_PARAMS((void));

/**** Copy the flags **/
EXTERN int tf_copypvc_flag PROTO_PARAMS((int nparam));

/* Divide 2 64-bit time values **/
EXTERN void tf_divide_long PROTO_PARAMS((int *aof_lowl,
int *aof_highl,int low2,int high2));
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/*** Perform the $finish on the simulator from C program **/
EXTERN int tf_dofinish PROTO_PARAMS((void));

/* Perform the $stop from the C program on the simulator **/
EXTERN int tf_dostop PROTO_PARAMS((void));

/******** Set an error message on **/
EXTERN int tf_error PROTO_PARAMS((char *fmt,...));

/************ Evaluate an expression present in the parameter *************/
EXTERN int tf_evaluatep PROTO_PARAMS((int pnum));

EXTERN p_tfexprinfo tf_exprinfo PROTO_PARAMS((int pnum,p_tfexprinfo pinfo));

/********* Get the string parameter **/
EXTERN char *tf_getcstringp PROTO_PARAMS((int nparam));

/* get instance id for a particular module which calls the C task or fucntion **/
EXTERN char *tf_getinstance PROTO_PARAMS((void));

/********Get a pointer to 64 bit parameter value **/
EXTERN int tf_getlongp PROTO_PARAMS((int *aof_highvalue,int pnum));

/********* Get a pointer to high order bytes of 64 bit time **/
EXTERN int tf_getlongtime PROTO_PARAMS((int *aof_hightime));

/************ Get next parameter's time value **/

EXTERN int tf_getnextlongtime PROTO_PARAMS((int *aof_lowtime, int
*aof_hightime));

/*** Obtain value of a parameter - number pnum **/
EXTERN int tf_getp PROTO_PARAMS((int pnum));

/* obtain the value-change flag of the parameter **/
EXTERN int tf_getpChange PROTO_PARAMS((int nparam));
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/****************** get real parameter value *************************/

EXTERN double tf_getrealp PROTO_PARAMS((int pnum));

/*************** get real-time ********************/

EXTERN double tf_getrealtime PROTO_PARAMS((void));

/********************** get current simulation time *******************/

EXTERN int tf_gettime PROTO_PARAMS((void));

/* Get the current timescale information - the precision part of it **/
EXTERN int tf_gettimeprecisian PROTO_PARAMS((void));

/* Get the current timescale information - the unit part of it **/
EXTERN int tf_gettimeunit PROTO_PARAMS((void));

/* Obtain memory via Verilog's memory -allocation scheme **/
EXTERN char *tf_getworkarea PROTO_PARAMS((void));

/************ The following set of routines is similar to other set of routines - but is
instance-based ******/

/**** Instance-based misctf calls - asynchronous calls off ***/
EXTERN int tf_iasynchoff PROTO_PARAMS((char *inst));

/**** Instance-based misctf calls for the current "C" function - asynchronous calls on ***/
EXTERN int tf_iasynchon PROTO_PARAMS((char *inst));

EXTERN int tf_iclearalldelays PROTO_PARAMS((char *inst));
EXTERN int tf_icopypvc_flag PROTO_PARAMS((int nparam,char *inst));
EXTERN int tf_ievaluatep PROTO_PARAMS((int pnum,char *inst));

/********** Get expression-node (parameter) information *****/
EXTERN p_tfexprinfo tf_iexprinfo PROTO_PARAMS((int pnum,p_tfexprinfo pinfo,
char *inst));

/***************** Get String for a parameter for a particular instance ****/
EXTERN char *tf_igetcstringp PROTO_PARAMS((int nparam, char *inst));
EXTERN int tf_igetlongp PROTO_PARAMS((int *aof_highvalue,int pnum,
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char *inst));
EXTERN int tf_igetlongtime PROTO_PARAMS((int *aof_hightime,
char *inst));
EXTERN int tf_igetp PROTO_PARAMS((int pnum,char *inst));
EXTERN int tf_igetpchange PROTO_PARAMS((int nparam,char *inst));
EXTERN double tf_igetrealp PROTO_PARAMS((int pnum,char *inst));
EXTERN double tf_igetrealtime PROTO_PARAMS((char *inst));
EXTERN int tf_igettime PROTO_PARAMS((char *inst));
EXTERN int tf_igettimeprecision PROTO_PARAMS((char *inst));
EXTERN int tf_igettimeunit PROTO_PARAMS((char *inst));
EXTERN char *tf_igetworkarea PROTO_PARAMS((char *inst));
EXTERN char *tf_imipname PROTO_PARAMS((char *cell));
EXTERN int tf_imovepvc_flag PROTO_PARAMS((int nparam, char *inst));
EXTERN p_tfnodeinfo tf_inodeinfo PROTO_PARAMS((int pnum,p_tfnodeinfo pinfo,
char *inst));
EXTERN int tf_inump PROTO_PARAMS ((char *inst));
EXTERN int tf_ipropagatep PROTO_PARAMS((int pnum,char *inst));
EXTERN int tf_iputlongp PROTO_PARAMS((int pnum,int lowvalue,
int highvalue,char *inst));
EXTERN int tf_iputp PROTO_PARAMS ((int pnum,int value,char *inst));
EXTERN int tf_iputrealp PROTO_PARAMS((int pnum,double value, char *inst));

EXTERN int tf_irosynchronize PROTO_PARAMS((char *inst));
EXTERN int tf_isetdelay PROTO_PARAMS((int delay,char *inst));
EXTERN int tf_isetlongdelay PROTO_PARAMS((int lowdelay,
int highdelay,char *inst));
EXTERN int tf_isetrealdelay PROTO_PARAMS((double realdelay,
char *inst));
EXTERN int tf_isetworkarea PROTO_PARAMS((char *workare,
char *inst));
EXTERN int tf_isizep PROTO_PARAMS((int pnum,char *inst));
EXTERN char *tf_ispname PROTO_PARAMS((char *cell));
EXTERN int tf_istrdelputp PROTO_PARAMS ((int nparam,int bitlength, int
format_char, char *value_p, int
delay,int delaytype,char *inst));

EXTERN char *tf_istrgetp PROTO_PARAMS((int pnum,int format_char,char *inst));
EXTERN int tf_istrlongdelputp PROTO_PARAMS((int nparam, int bitlenqth,int
format_char,char *value_p,
int lowdelay,int highdelay,int delaytype, char *inst));

EXTERN int tf_istrrealdelputp PROTO_PARAMS((int nparam, int bitlength,int
format_char,char *value_p,
double realdelay,int delaytype,char *inst));
EXTERN int tf_isynchronize PROTO_PARAMS ((char *inst));
EXTERN int tf_itestpvc_flag PROTO_PARAMS((int nparam,char *inst));
EXTERN int tf_itypep PROTO_PARAMS((int pnum,char *inst));
EXTERN void tf_long_to_real PROTO_PARAMS((int lo,int hi, double *aof_real));



416 Appendix C

/**************************************************************************/
/* Convert a 64-bit quantity to a string value **/
EXTERN char *tf_longtime_tostr PROTO_PARAMS((int lowtime,
int hightime));
/**** Display a message on the screen **/
EXTERN int tf_message PROTO_PARAMS((int level,char *facility, char
*messno,char *message,..));

/********** ..................... *************************/
EXTERN char *tf_mipname PROTO_PARAMS((void));
EXTERN int tf_movepvc_flag PROTO_PARAMS((int nparam));
EXTERN void tf_multiply_long PROTO_PARAMS((int *aof_lowl, int
*aof_highl,int low2,int high2));

/**************** Obtain information about the node ****************************/
EXTERN p_tfnodeinfo tf_nodeinfo PROTO_PARAMS((int pnum, p_tfnodeinfo pinfo));

/* Obtain number of parameters to this C function ***/
EXTERN int tf_nump PROTO_PARAMS((void));
EXTERN int tf_propagatep PROTO_PARAMS((int pnum));
EXTERN int tf_putlongp PROTO_PARAMS((int pnum,int lowvalue, int
highvalue));

/* write back a value of the parameter ***/
EXTERN int tf_putp PROTO_PARAMS((int pnum,int value));
EXTERN int tf_putrealp PROTO_PARAMS((int pnum,double value));

EXTERN int tf_read_restart PROTO_PARAMS((char *blockptr, int blocklen));

/** Convert a real number to a 64 bit long number **/

EXTERN void tf_real_to_long PROTO_PARAMS((double real, int *aof_int_lo,int
*aof_int_hi));
EXTERN int tf_rosynchronize PROTO_PARAMS((void));
/* Following set of routines help get the delays adjusted ***/
/* Scale delays by a factor **/
EXTERN void tf_scale_longdelay PROTO_PARAMS((char *cell, int delay_lo,int
delay_hi,int *aof_delay_lo, int *aof delay_hi));
EXTERN void tf_scale_realdelay PROTO_PARAMS((char *cell, double realdelay,double
*aof_realdelay));
EXTERN int tf_setdelay PROTO_PARAMS((int delay));
EXTERN int tf_setlongdelay PROTO_PARAMS((int lowdelay, int highdelay));
EXTERN int tf_setrealdelay PROTO_PARAMS((double realdelay));
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/** Set the work area to a pointer previously obtained using tf_getarea ***/
EXTERN int tf_setworkarea PROTO_PARAMS((char *workarea));
EXTERN int tf_sizep PROTO_PARAMS ((int pnum));
EXTERN char *tf_spname PROTO_PARAMS((void));
/******************* Write a delay value in the form of a string *****************/
EXTERN int tf_strdelputp PROTO_PARAMS((int nparam,int bitlength, int
format_char, char *value_p, int delay,
int delaytype));

/***** Obtain a parameter value in the form of a string ****/
EXTERN char *tf_strgetp PROTO_PARAMS((int pnum,int format_char));
/** Obtain a time parameter value in the form of a string **/
EXTERN char *tf_strgettime PROTO_PARAMS((void));
/******* Put a delay value into a parameter ***/
EXTERN int tf_strlongdelputp PROTO_PARAMS((int nparam, int bitlength, int
format_char, char *value_p, int lowdelay,
int highdelay,int delaytype));
/************ Put a parameter that is a delay in the real format **/
EXTERN int tf_strrealdelputp PROTO_PARAMS((int nparam, int bitlength,int
format_char,char *value_p, double
realdelay.int delaytype));

/** Subtract 2 64-bit quantities ***/
EXTERN int tf_subtract_long PROTO_PARAMS((int *aof_lowtimel, int
*aof_hightimel, int lowtime2, int hightime2));

EXTERN int tf_synchronize PROTO_PARAMS((void));
EXTERN int tf_testpvc_flag PROTO_PARAMS((int nparam));
EXTERN int tf_text PROTO_PARAMS((Char *fmt,...));
EXTERN int tf_typep PROTO_PARAMS((int pnum));
EXTERN void tf_unscale_longdelay PROTO_PARAMS((char *csll, int delay_lo,int
delay _hi,int *aof_delay_lo, int *aof_delay_hi));
EXTERN void tf_unscale_realdelay PROTO_PARAMS((char *cell, double
realdelay,double *aof_realdelay));

/*** Issue a warning out on the screen ****/
EXTERN int tf_warning PROTO_PARAMS ((char *fmt,...));
EXTERN int tf_write_save PROTO_PARAMS((char *blockptr, int blocklen));
#ifdef DEFINED_PROTO_PARAMS
#undef DEFINED_PROTO_PARAMS
#undef PROTO_PARAMS
#endif

#ifdef DEFINED_EXTERN
#undef DEFINED_EXTERN
#undef EXTERN
#endif

#endif/*VERIUSER H*/
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/* Appendix D Programming Language Interface - Header File Listing acc_user.h*/
/***************************************************************************
* acc_user.h
*
* IEEE 1364 1995 Verilog HDL Programming Language Interface (PLI).
*
* This file contains the constant definitions, structure definitions, and
* routine declarations used by the Verilog PLI procedural interface ACC
* access routines.
*

* The file should be included with all C routines that use the PLI ACC
* routines.
*************************************************************************/

#ifndef ACC_USER_H
#define ACC_USER_H
/* - - - -----       - definitions      ------ - */
/*-- ---- - ---- -- ----- - general defines - ----- - -------- ----*/
typedef int *HANDLE;
typedef int *handle;
#define bool int
#define true 1
#define TRUE 1
#define false 0
#define FALSE 0
#define global extern
#define exfunc
#define localstatic
#define accNet 25
#define accReg 30
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#define accRegister accReg
#define accPort 35
#define accTerminal 45
#define accInputTerminal 46
#define accOutputTerminal 47

#define accInoutTerminal 48
#define accCombPrim 140
#define accSeqPrim 142
#define accAndGate 144
#define accNandGate 146
#define accNorGate 148
#define accOrGate 150
#define accXorGate 152
#define accXnorGate 154
#define accBufGate 156
#define accNotGate 158
#define accBufifOGate 160
#define accBufiflGate 162
#define accNotifOGate 164
#define accNotiflGate 166
#define accNmosGate 168
#define accPmosGate 170
#define accCmosGate 172
#define accRnmosGate 174
#define accRpmosGate 176
#define accRcmosGate 178
#define accRtranGate 180
#define accRtranifOGate 182
#define accRtraniflGate 184
#define accTranGate 186
#define accTranifOGate 18B
#define accTraniflGate 190
#define accPullupGate 192
#define accPulldownGate 194
#define accIntegerParam 200
#define accIntParam acc1ntegerParam
#define accRealParam 202
#define accStringParam 204
#define accPath 206
#define accTchk 208
#define accPrimitive 210
#define accPortBit 214
#define accNetBit 216
#define accRegBit 21B
#define accParameter 220
#define accSpecparam 222
#define accTopModule 224
#define accModuleInstance 226
#define accCellInstance 228
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#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

accModPath
accWirePath
accInterModPath
accScalarPort
accPartSelectPort
accVectorPort
accConcatPort
accWire
accWand
accWor
accTri
accTriand

accTrior 265
accTriO 266
accTril 267
accTrireg 268
accSupply0 269
accSupplyl 270
accNamedEvent 280
accEventVar accNamedEvent
accIntegerVar 281
accIntVar 281
accRealVar 282
accTimeVar 283
accScalar 300
accVector 302
accCollapsedNet 304
accExpandedVector 306
accUnExpandedVector 307
accSetup 366
accHold 367
accWidth 368
accPeriod 369
accRecovery 370
accSkew 371
accNochange 376
accNoChange accNochange
accSetuphold 377
accInput 402
acc0utput 404
accInout 406
accMixedIo 407
accPositive 408
accNegative 410
accUnknown 412
accPathTerminal 420
accPathInput 422
accPathOutput 424
accDataPath 426
accTchkTerminal 428

230
234

236
250
254

256
258

260
261

262
263

264
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#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

accBitSelect 500
accPartSelect 502
accTask 504
accFunction 506
accStatement 508
accSystemTask 514
accSystemFunction 516
accSystemRealFunction 518
accUserTask 520
accUserFunction 522
accUserRealFunction 524
accNamedBeginStat 560
accNamedForkStat 564
accConstant 600
accConcat 610
accOperator 620
accMinTypMax 696
accModPathHasIfnone 715

/*---------------- parameter values for acc configure() -- --------------*/
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

accPathnelayCount
accPathDelimStr
accDisplayErrors
accDefaultAttrO
accToHiZDelay
accEnableArqs
accDisplayWarnings
accDevelopmentVersion
accMapToMipd
accMinTypMaxDelays

1
2
3
4
5

6
8

11
17

19

/*--- ------- edge information used by acc_handle tchk(),etc. - --- - - --*/
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

accNoedge
accNoEdge
accEdge0l
accEdgelO
accEdgeOx
accEdgexl
accEdgelx
accEdgexO
accPosedge
accPosEdge
accNegedge
accNegEdge

#define accDelayModeNone 0

0
0
1
2
4

8
16
32
13
accPosedge
50
accNegedge

/*----- ---- --------- - ------ delay models ------ ---------- -- - ----*/
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#define accDelayModePath 1
#define accDelayModeDistrib 2
#define accDelayModeUnit 3
#define accDelayModeZero 4
#define accDelayModeMTM 5

/* ---------- values for type field in t setval delay structure --- --- - --*/
#define accNoDelay 0
#define accInertialDelay 1
#define accTransportDelay 2
#define accPureTransportDelay 3
#define accForceFlag 4
#define accReleaseFlag 5
#define accAssignFlag 6
#deflne. accDeassignFlag 7

/* ------ --- values for type field in t setval_value structure --- ------ -*/
#define accBinStrVal 1
#define accOctStrVal 2
#define accDecStrVal 3
#define accHexStrVal 4
#define accScalarVal 5
#define accIntVal 6
#define accRealVal 7
#define accStringVal 8
#define accVectorVal 10

/* ---------------   - --- ---- scalar values ---- --- - ---- --- ---- --- -*/
#define acc0 0
#define accl 1
#define accX 2
#define accZ 3

/*------------------ - - - ----VCL sCalar values --- --- ----- - ---- - -- --*/
#define vcl0 acc0
#define vcll accl
#define vclX accX
#define vclx vclX
#define vclZ accZ
#define vclz vclZ

/*----- ----values for vc_reason field in t_vc_record structure -- --------*/
#define logic_value_change 1
#define strength_value change2
#define real_value_change 3



/*-- flags used with acc_vcl_add - - --- -- -- - - ----*/
#define vcl_verilog_logic 2
#define VCL_VERILOG_LOGIC vcl_verilog_logic
#define vcl_verilog_strength 3
#define VCL_VERILOG_STRENGTH vcl_verilog_strength

/*-- flags used with acc_vcl_delete -- --- - - --- --- -*/
#define vcl_verilog vcl_verilog_logic
#define VCL_VERILOG vcl_verilog

#define vector_value_change 4
#define event_value_chanqe 5
#define integer_value_change 6
#define time_value_change 7
#define sregister_value change 8
#define vregister value change 9
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/*-- -- ---------- - --- ---VCL strength values - --- -- ----- - ---- - -*/
#define vclSupply 7
#define vclStrong 6
#define vclPull 5
#define vclLarge 4
#define vclWeak 3
#define vclMedium 2
#define vclSmall 1
#define vclHighZ 0

/*---------- values for the type field in the t acc time structure - ---- --*/
#define accTime 1
#define accSimTime 2
#define accRealTime 3

/*-- - product types ---- - - - - ----- - --- - -*/
#define accSimulator 1
#define accTimingAnalyzer 2
#define accFaultSimulator 3
#define accOther 4

/* -- */

/* --- --------------- global variable definitions */
/*--*/
extern bool acc_error_flag;
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typedef int (*consumer_function)();
/*

/*-- structure definitions- */
/*--*/

/*-- ------------- data structure used with acc_set_value()- -------*/
typedef struct t_acc_time
{

int type;
int low,
high;
double real;

} s_acc_time, *p_acc_time;

/* -------------- data structure used with acc_set_value()-*/
typedef struct t_setval_delay
{

s_acc_time time;
int model;

} s_setval_delay, *p_setval_delay;

/* data structure of vector values-*/
typedef struct t_acc_vecval
{

int aval;
int bval;

} s_acc_vecval, *p_acc_vecval;

typedef struct t_setval_value
{

int format;
union

{
char *str;
int scalar;
int integer;
double real;
p_acc_vecval vector;

} value;
} s_setval_value, *p_setval_value, s_acc_value, *p_acc_value;

/*--- -- -------------------structure for VCL strengths ----- - --- - --------- */
typedef struct t_strengths
{
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unsigned char logic_value;
unsigned char strength1;
unsigned char strength2;

} s_strengths, *p_strengths;

/* ----- ------ - structure passed to callback routine for VCL -------------*/
typedef struct t_vc_record
{

int vc_reason;
int vc_hightime;
int vc_lowtime;
char *user_data;
union
{

unsigned char logic_value;
double real_value;
handle vector_handle;
s_strengths strengths_s;

} out_value;
}
s_vc_record, *p_vc_record;

/* ------------ structure used with acc_fetch_location() routine -----------*/
typedef struct t_location
{

int line_no;
char *filename;

} s_location, *p_location;

/* -- - - -- structure used with acc_fetch_timescale_info() routine --------*/
typedef struct t_timescale_info
{

short unit;
short precision;

} s_timescale_info, *p_timescale_info;

/*-- -*/
/*------------ ------------ routine declarations--- ----- --------------*/
/* -- -*/
#if defined(_STDC_) || defined( _cplusplus)

#ifndef PR020_PARAMS
#define PROTO_PARAMS(params) params
#define DEFINED_PROTO_PARAMS
#endif
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#ifndef EXTERN
#define EXTERN
#define DEFINED_EXTERN
#endif
#else
#ifndef PROTO_PARAMS
define PROTO_PARAMS(params) (/* nothing */)
#define DEFINED_PROTO_PARAMS
#endif
#ifndef EXTERN
#define EXTERN extern
#define DEFINED_EXTERN
#endif
#endif/*STDC*/

/************* Descriptions of routines in the access routines interface
************************************/

/**** append delays into an object ****/
EXTERN bool acc_append_delays PROTO_PARAMS((handle object,...));

/************ append pulse values into the objects *************************/
EXTERN bool acc_append_pulsere PROTO_PARAMS((handle object,double vallr,
double vallx,...));
EXTERN void *acc_close PROTO_PARAMS (void)

EXTERN handle acc_collect (handle (*p_next_routine, handle scope_object, int
*aof_count));
EXTERN bool acc_compare_handles PROTO_PARAMS((handle h1,handle h2));
EXTERN bool acc_configure PROTO_PARAMS((int item,char *value));

/*************************************************/
EXTERN int acc_count PROTO_PARAMS((handle (*next_func)(), handle object_
handle));
EXTERN int acc_fetch_argc PROTO_PARAMS((void));
EXTERN char **acc_fetch_argv PROTO_PARAMS((void));
EXTERN double acc_fetch_attribute PROTO_PARAMS((handle object,...));
EXTERN int acc_fetch_attribute_int PROTO_PARAMS((handle object,...));
EXTERN char *acc_fetch_attribute_str PROTO_PARAMS((handle object,...));
EXTERN char *acc_fetch_defname PROTO_PARAMS((handle object_handle));
EXTERN int acc_fetch_delay_mode PROTO_PARAMS((handle object_p));
EXTERN bool acc_fetch_delays PROTO_PARAMS((handle object,...));
EXTERN int acc_fetch_direction PROTO_PARAMS((handle object_handle));
EXTERN int acc_fetch_edge PROTO_PARAMS((handle acc_obj));
EXTERN char *acc_fetch_fullname PROTO_PARAMS((handle object_handle));

EXTERN int acc_fetch_fulltype PROTO_PARAMS((handle object_h));
;
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EXTERN int acc_fetch_index PROTO_PARAMS((handle object_handle));
EXTERN double acc_fetch_itfarg PROTO_PARAMS((int n,handle tfinst));
EXTERN int acc_fetch_itfarg_int PROTO_PARAMS((int n,handle tfinst));
EXTERN char *acc_fetch_itfarg_str PROTO_PARAMS((int n,handle tfinst));
EXTERN int acc_fetch_location PROTO_PARAMS((p_location location_p, handle
object));
EXTERN char *acc_fetch_name PROTO_PARAMS ((handle object_handle));
EXTERN int acc_fetch_paramtype PROTO_PARAMS((handle param_p));
EXTERN double acc_fetch_paramval PROTO_PARAMS((handle param));
EXTERN int acc_fetch_polarity PROTO_PARAMS((handle path));
EXTERN int acc_fetCh_precision PROTO_PARAMS((void));
EXTERN bool acc_fetch_pulsere PROTO_PARAMS((handle path_p,double *vallr,double
*valle,...));
EXTERN int acc_fetch_range PROTO_PARAMS((handle node,int *msb,int *lsb));
EXTERN int acc_fetch_size PROTO_PARAMS((handle obj_h));
EXTERN double acc_fetch_tfarg PROTO_PARAMS((int n));
EXTERN int acc_fetch_tfarg_int PROTO_PARAMS((int n));
EXTERN char *acc_fetch_tfarg_str PROTO_PARAMS((int n));
EXTERN void acc_fetch_timescale_info PROTO_PARAMS((handle obj,p_timescale_info
aof_timescale_info));
EXTERN int acc_fetch_type PROTO_PARAMS((handle object_handle));
EXTERN char *acc_fetch_type_str PROTO_PARAMS((int type));
EXTERN char *acc_fetch_value PROTO_PARAMS((handle object_handle,char
*format_str,p_acc_value acc_value_p));
EXTERN void acc_free PROTO_PARAMS((handle *array_ptr));
EXTERN handle acc_handle_by_name PROTO_PARAMS((char *inst_name,handle
scope_p));
EXTERN handle acc_handle_condition PROTO_PARAMS((handle obj));
EXTERN handle acc_handle_conn PROTO_PARAMS((handle term_p));
EXTERN handle acc_handle_datapath PROTO_PARAMS((handle path));
EXTERN handle acc_handle_hiconn PROTO_PARAMS((handle port_ref));
EXTERN handle acc_handle_interactive_scope PROTO_PARAMS((void));
EXTERN handle acc_handle_itfarg PROTO_PARAMS((int n,void *suena_inst));
EXTERN handle acc_handle_loconn PROTO_PARAMS((handle port_ref));
EXTERN handle acc_handle_modpath PROTO_PARAMS((handle mod_p,char
*pathin_name, char *pathout_name, ...));
EXTERN handle acc_handle_notifier PROTO_PARAMS((handle tchk));
EXTERN handle acc_handle_object PROTO_PARAMS((char *inst_name, ...));
EXTERN handle acc_handle_parent PROTO_PARAMS((handle object_p));
EXTERN handle acc_handle_path PROTO_PARAMS((handle source, handle destination));
EXTERN handle acc_handle_pathin PROTO_PARAMS((handle path_p));
EXTERN handle acc_handle_pathout PROTO_PARAMS((handle path_p));
EXTERN handle acc_handle_port PROTO_PARAMS((handle mod_handle,int port_num,
...));
EXTERN handle acc_handle_scope PROTO_PARAMS((handle object));
EXTERN handle acc_handle_simulated_net PROTO_PARAMS((handle net_h));
EXTERN handle acc_handle_tchk PROTO_PARAMS ((handle mod_p, int tchk_type,char
*argl_conn_name, int argl_edgetype,
..));
EXTERN handle acc_handle_tchkargl PROTO_PARAMS((handle tchk));
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EXTERN handle acc_handle_tchkarg2 PROTO_PARAMS((handle tchk));
EXTERN handle acc_handle_terminal PROTO_PARAMS ((handle gate_handle, int
terminal_index));
EXTERN handle acc_handle_tfarg PROTO_PARAMS((int n));
EXTERN handle acc_handle_tfinst PROTO_PARAMS((void));
EXTERN bool acc_initialize PROTO_PARAMS((void));
EXTERN handle acc_next PROTO_PARAMS((int *type list, handle h_scope, handle
h_object));
EXTERN handle acc_next_bit PROTO_PARAMS ((handle vector, handle bit));
EXTERN handle acc_next_cell PROTO_PARAMS((handle scope, handle cell));
EXTERN handle acc_next_cell_load PROTO_PARAMS((handle net_handle, handle load));
EXTERN handle acc_next_child PROTO_PARAMS((handle mod_handle, handle child));
EXTERN handle acc_next_driver PROTO_PARAMS((handle net,handle driver));
EXTERN handle acc_next_hiConn PROTO_PARAMS((handle port,handle hiconn));
EXTERN handle acc_next_input PROTO_PARAMS((handle path,handle pathin));
EXTERN handle acc_next_load PROTO_PARAMS((handle net,handle load));
EXTERN handle acc_next_loconn PROTO_PARAMS((handle port,handle loconn));
EXTERN handle acc_next_modpath PROTO_PARAMS((handle mod_p, handle path));
EXTERN handle acc_next_net PROTO_PARAMS((handle mod_handle,handle net));
EXTERN handle acc_next_output PROTO_PARAMS((handle path,handle pathout));
EXTERN handle acc_next_parameter PROTO_PARAMS((handle module_p, handle
param));
EXTERN handle acc_next_port PROTO_PARAMS((handle ref_obj_p,handle port));
EXTERN handle acc_next_portout PROTO_PARAMS((handle mod_p,handle port));
EXTERN handle acc_nextprimitive PROTO_PARAMS((handle mod_handle, handle prim));
EXTERN handle acc_next_scope PROTO_PARAMS((handle ref_scope_p, handle scope));
EXTERN handle acc_next_specparam PROTO_PARAMS((handle module_p, handle
sparam));
EXTERN handle acc_next_tohk PROTO_PARAMS((handle mod_p,handle tchk));
EXTERN handle acc_next_terminal PROTO_PARAMS((handle gate_handle, handle term));
EXTERN handle acc_next_topmod PROTO_PARAMS((handle topmod));
EXTERN bool acc_object_of_type PROTO_PARAMS((handle object,int type));
EXTERN bool acc_object_in_typelist PROTO_PARAMS((handle object, int *type_list));
EXTERN int acc_product_type PROTO_PARAMS((void));
EXTERN char *acc_product_version PROTO_PARAMS((void));
EXTERN int acc_release_object PROTO_PARAMS((handle obj));
EXTERN bool acc_replace_delays PROTO_PARAMS((handle object,..));
EXTERN bool acc_replace_pulsere PROTO_PARAMS((handle object,double vallr, double
vallx,....));
EXTERN void acc_reset_buffer PROTO_PARAMS((void));
EXTERN bool acc_set_interactive_scope PROTO_PARAMS((handle scope, int
callback_flag));
EXTERN bool acc_set_pulsere PROTO_PARAMS((handle path,double vallr, double valle));
EXTERN char *acc_set_scope PROTO_PARAMS((handle object,...));
EXTERN int acc_set_value PROTO_PARAMS((handle obj, p_setval_value setvall,
p_setval_delay delay));
EXTERN void acc_vcl_add PROTO_PARAMS((handle object_p, int (*consumer)(), char
*user_data,int vcl_flags));
EXTERN void acc_vcl_delete PROTO_PARAMS((handle object, int (*consumer)(),char
*user_data,int vcl_flags));
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EXTERN char *acc_version PROTO_PARAMS((void));
#ifdef DEFINED_PROTO_PARAMS
#undef DEFINED_PROTO_PARAMS
#undef PROTO_PARAMS
#endif

#ifdef DEFINED_EXTERN
#undef DEFINED_EXTERN
#undef EXTERN
#endif

Appendix D

#define acc_handle_calling_mod_m acc_handle_parent((handle)tf_getinstance())

#endif /*ACC_USER H */



E PROGRAMMING

LANGUAGE INTERFACE (PLI)
Header File – vpi_user.h file

/* Appendix E Programming Language Interface - vpi_user.h file*/
/**********************************************************************
* vpi_user.h

*

* IEEE 1364 1995 Verilog HDL Programming Language Interface (PLI).
*
* This file contains the constant definitions, structure definitions,
* and routine declarations used by the Verilog PLI VPI procedural
* interface.
*
* The file should be included with all C routines that use the VPI
* routines.
*********************************************************************/

#ifndef VPI_USER_H
#defineVPI_USER_H

/* basic typedefs */

typedef unsigned long *vpiHandle;

/*Following are the constant definitions. They are divided into three
major areas:
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1)
2)
3)

object types
access methods
properties

Note that most of the object types can also be used as access
methods, and that some methods can also be used a properties.

*/

/*********** OBJECT TYPES **********/
#define vpiAlways 1 /* always block */
#define vpiAssign5tmt 2 /* quasi-continuous assignment */
#define vpiAssignment 3 /* procedural assignment */
#define vpiBegin 4 /* block statement */
#define vpiCase 5 /* case statement */
#define vpiCaseItem 6 /* case statement item */
#define vpiConstant 7 /* numerical constant or literal string */
#define vpiContAssign 8 /* continuous assignment */
#define vpiDeassign 9 /* deassignment statement */
#define vpiDefParam 10 /* defparam */
#define vpiDelayControl 11 /* delay statement (e.g. #10) */
#define vpiDisable 12 /* named block disable statement */
#define vpiWait 69 /* wait statement */
#define vpiWhile 70 /* while statement */
/*********** METHODS ***********/
/*********** methods used to traverse 1 to 1 relationships ***********/
#define vpiCondition 71 /* condition expression */
#define vpiDelay 72 /* net or gate delay */
#define vpiElseStmt 73 /* else statement */
#define vpiForIncStmt 74 /* increment statement in for loop */
#define vpiForInitStmt 75 /* initialization statement in for loop */
#define vpiHighConn 76 /* higher connection to port */
#define vpiLhs 77 /* left-hand side of assignment */
#define vpilndex 78 /* index of var select, bit select, etc. */
#define vpiLeftRange 79 /* left range of vector or part select */
#define vpiLowConn 80 /* lower connection to port */
#define vpiParent 81 /* parent object */
#define vpiRhs 82 /* right-hand side of assignment */
#define vpiRightRange 83 /* right range of vector or part select */
#define vpiScope 84 !* containing scope object */
#define vpiSysTfCall 85 /* task function call */
#define vpiTchkDataTerm 86 /* timing check data term */
#define vpiTchkNotifier 87 /* timing check notifier */
#define vpiTchkRefTerm 88 /* ti.ming check reference term */

/*********** methods used to traverse 1 to many relationships ***********/
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#define vpiArgument 89 /* argument to (system) task or function */
#define vpiBit 90 /* bit of vector net or port */
#define vpiDriver 91 /* driver for a net */
#define vpilnternalScope 92 /* internal scope in module */
#define vpiLoad 93 /* load on net or register */
#define vpiModDataPathIn 94 /* data terminal of a module path *,/
#define vpiModPathIn 95 /* Input terminal of a module path */
#define vpiModPathOut 96 /* output terminal of a module path */
#define vpiOperand 97 /* operand of expression */
#define vpiPortInst 98 /* connected port instance */
#define vpiProcess 99 /* process in module */
#define vpiVariables 100 /* variables in module */
#define vpiUse 101 /* usage */

/****** methods which can traverse 1-to-l, or 1-to-many relationships ******/
#define vpiExpr 102 /* connected expression */
#define vpiPrimitive 103 /* primitive (gate, switch, UDP) */
#define vpiStmt 104 /* statement in process or task */

/*********** PROPERTIES ***********/
/*********** generic object properties ***********/
#define vpiundefined -1 /* undefined property */
#define vpiType 1 /* type of object */
#define vpiName 2 /* local name of object */
#define vpiFullName 3 /* full hierarchical name */
#define vpiSize 4 /* size of gate, net, port, etc. */
#define vpiFile 5 /* File name in which the object is used */
#define vpiLineNo 6 /* File line numbez' where object is used */

/*********** modules properties **********/
#define vpiTopModule module time precision */
#define vpiDefNetType 13 /* default net type */
#define vpiUnconnDrive 14 /* unconnected port drive strength */
#define vpiHighZ 1 /* No default drive given */
#define vpiPulll 2 /* default pulll drive */
#define  vpiPullO 3 /* default pul l0drive */
#define vpiDefFile 15 /* File name where the module is defined */
#define vpiDefZineNo 16 /* File line number where module is defined*/
#define vpiDefDelayMode 17 /* Delay mode of the module */
#define vpiDelayModeNone 1 /* No delay mode specified */
#define vpiDelayModePath 2 /* Path delay mode */
#define vpiDelayModeDistrib 3 /* Distributed delay mode */
#define vpiDelayModeUnit 4 /* Unit delay mode */
#define vpiDelayModeZero 5 /* Zero delay mode */
#define vpiDelayModeMTM 6 /* min:typ:max delay mode */
#define vpiDefDecayTime 18 /* Decay time for trireg net */

PROGRAMMING LANGUAGE INTERFACE (PLI)



434 Appendix E

/*********** port and net properties ***********/
#define vpiScalar 17 /* scalar (boolean) */
#define vpiVector 18/* vector (boolean) */
#define vpiExplicitName 19 /* port is explicitly named */
#define vpiDirection 20 /* direction of port: */
#define vpiInput 1 /* input */
#define vpi0utput 2 /* output */
#define vpiInout 3 /* inout */
#define vpiWor 3 /* wire-or net */
#define vpiTri 4 /* tri-state net */
#define vpiTriO 5 /* pull-down net */
#define vpiTril 6 /* pull-up net */
#define vpiTriReg 7 /* tri state reg net */
#define vpiTriAnd 8 /* tri-state wire-and net */
#define vpiTriOr 9 /* tri-state wire-or net */
#define vpiSupplyl 10 /* supply 1net */
#define vpiSupply0 11 /* supply zero net */

#define vpiExplicitScalared 23 /* explicitly scalared (boolean) */
#define vpiExplicitVectored 24 /* explicitly vectored (boolean) */
#define vpiExpanded 25 /* expanded vector net (boolean) */
#define vpiImplicitDecl 26 /* implicitly declared net (boolean) */
#define vpiChargeStrength 27 /* charge decay strength of net */
#define vpiArray 28 /* variable array (boolean) */
#define vpiPortIndex 29 /* Port index */

/*********** gate and terminal properties ***********/
#define vpiTermIndex 30 /* Index of a primitive terminal */
#define vpiStrength0 31 /* 0-strength of net or gate */
#define vpiStrenqthl 32 /* 1-strength of net or gate */
#define vpiPrimType 33 /* prmitive subtypes: */
#define vpiAndPrim 1 /* and gate */
#define vpiNandPrim 2 /* nand gate */
#define vpiNorPrim 3 /* nor gate */
#define vpiOrPrim 4 /* or gate */
#define vpiXorPrim 5 /* xor gate */
#define vpiXnorPrim 6 /* xnor gate *!
#define vpiBufPril /* zero-enabled not gate */
#define vpiNotiflPrim 12 /* one-enabled not gate */
#define vpiNmosPrim 13 /* nmos switch */
#define vpiPmosPrim 14 /* pmos switch */
#define vpiCmosPrim 15 /* cmos switch */
#define vpiRnmosPrim 16/* resistive nmos switch */
#define vpiRpmosPrim 17 /* resistive pmos switch *!
#define vpiRcmosPrim 18 /* resistive cmos switch */
#define vpiRtranPrim 19 /* resistive bidirectional */
#define vpiRtranifOPrim 20 /* zero-enable resistive bidirectional */
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#define vpiRtraniflPrim 21 /* one-enable resistive bidirectional */
#define vpiTranPrim 22 /* bidirectional */
#define vpiTranifOPrim 23 /* zero-enabled bidirectional *J
#define vpiTraniflPrim 24 /* one-enabled bidirectional */
#define vpiPullupPrim 25 /* pullup */
#define vpiPulldownPrim 26 /* pulldown */
#define vpiSeqPrim 27 /* sequential UDP */
#define vpiCombPrim 28 /* combinational UDP */

#define vpiPolarity 34
#define vpiDataPolarity 35
#define vpiPositive 1
#define vpiNegative 2
#define vpiUnknown 3

#define vpiEdge 36 /* edge type of module path: */
#define vpiNoEdge 0x00000000 /* no edge */
#define vpiEdge0l 0x00000001 /* 0-> 1 */
#define vpiEdgelO 0x00000002 /* l-> 0*/
#define vpiEdgeOx 0x00000004 /* 0-> x */
#define vpiEdgexl 0x00000008 /* x -> 1 */
#define vpiEdgelx 0x00000010 /* l-> x */
#define vpiEdgexO 0x00000020 /* x osedge (vpiEdgexl | vpiEdge0l | vpiEdgeOx)
#define vpiNegedge (vpiEdgexO | vpiEdgelO | vpiEdgelx)
#define vpiAnyEdge (vpiPosedge | vpiNegedge)
#define vpiPathType 37 /* path delay connection subtypes: */
#define vpiPathFull 1 /* (a *> b) */
#define vpiPathParallel 2 /* (a => b) */

/* timing check properties **********/
/* polarity of module path... */
/* or data path: */
/* positive */
/* negative */
/* unknown (unspecified) */

#define vpiModPathHasIfnone 38 /* state-dependent module path has ifnone
condition specified */
#define vpiTchkType 39 /* timing check subtypes: */
#define vpiSetup 1 J* Ssetup */
#define vpiHold 2 /* $hold */
#define vpiPeriod 3 /* $period */
#define vpiWidth 4 /* $width */
#define vpiSkew 5 /* $skew */
#define vpiRecovery 6 /* $recovery */
#define vpiNoChange 7 /* $nochange */
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#define vpiSetupHold 8 /* $setuphold */
/********** expression  propert **********/
#define vpiOpType 40 /* operation subtypes: */
#define vpiMinusOp 1 /* unary minus */
#define vpiPlusOp 2 /* unary plus */
#define vpiNotOp 3 /* unary not */
#define vpiBitNegOp 4 /* bitwise negation */
#define vpiUnaryAndOp 5 /* bitwise reduction and */
#define vpiUnaryNandOp 6 /* bitwise reduction nand */
#define vpiUnaryOrOp 7 /* bitwise reduction or */
#define vpiUnaryNorOp 8 /* bitwise reduction nor */
#define vpiUnaryXorOp 9 /* bitwise reduction xor */
#define vpillnaryXNorOp 10 /* bitwise reduction xnor */
#define vpiSubOp 11 /* binary subtraction */
#define vpiDivOp 12 /* binary division */
#define vpiModOp 13 /* binary modulus */
#define vpiEqOp 14 /* binary equality */
#define vpiNeqOp 15 /* binary inequality */
#define vpiCaseEqOp 16 /* case (x and z) equality */
#define vpiCaseNeqOp 17 /* case inequality */
#define vpiGtOp 18 /* binary greater than */
#define vpiGeOp 19 /* binary greater than or equal */
#define vpiLtOp 20 /* binary less than */
#define vpiLeOp 21 /* binary less than or equal */
#define vpiLShiftOp 22 /* binary left shift */
#define vpiRShiftOp 23 /* binary right shift */
#define vpiAddOp 24 /* binary addition */
#define vpiMultOp 25 /* binary multiplication */
#define vpiLogAndOp 26 /* binary logical and */
#define vpiLogOrOp 27 /* binary logical or */
#define vpiBitAndOp 28 /* binary bitwise and */
#define vpiBitOrOp 29 /* binary bitwise or */
#define vpiBitXorOp 30 /* binary bitwise xor */
#define vpiBitXNorOp 31 /* binary bitwise xnor */
#define vpiConditionOp 32 /* ternary conditional */
#define vpiConcatOp 33 /* n-ary concatenation */
#define vpiMultiConcatOp 34 /* repeated concatenation */
#define vpiEventOrOp 35 /* event or */
#define vpiNullOp 36 /* null operation */
#define vpiListOp 37 /* list of expressions */
#define vpiMinTypMaxOp 38 /* min:typ:max: delay expression */
#define vpiPosedgeOp 39 /* posedge */
#define vpiNegedgeOp 40 /* negedge */

#define vpiConst2ype 41 /* constant subtypes: */
#define vpiDecConst 1 /* decimal integer */
#define vpiRealConst 2 /* real */
#define vpiBinaryConst 3 /* binary integer */
#define vpiOctConst 4 /* octal integer */
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#define vpifiexConst 5 /* hexadecimal integer */
#define vpiStringConst 6 /* string literal */

#define vpiBlocking 42 /* blocking assignment (boolean) */
#define vprties *******************/
#define vpiSysFuncType 45 /* system function type */
#define vpiSysFuncInt 1 /* returns integer */
#define vpiSysFuncReal 2 /* returns real */
#define vpiSysFuncTime 3 /* returns time */
#define vpiSysFuncSized 4 /* returns sized */
#define vpiUserDefn 46 /* user defined system tf_[boolean) */

#define vpiScheduled 47 /* is object vpiSchedEvent still scheduled */
/************ I/0 related defines **************************/
#define VPI_MCD_STDOUT 0x00000001
#define   VPI_MCD_STDERR 0x00000002
#define   VPI_MCD_LOG 0x00000004

/***********************  STRUCTURE DEFINITIONS *************************/
/************************** time structure ********************************/

typedef struct t_vpi_time {
int type; /* [vpiScaledRealTime, vpiSimTime,vpiSuppressTime]*/
unsigned int high,low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time,*p_vpi_time;

/* time types */
#define vpiScaledRealTime 1
#define vpiSimTime 2
#define vpiSuppressTime 3

/************************** delay structures ******************************/
typedef struct t_vpi_delay
{

struct t_vpi_time *da; /* ptr to user allocated array of delay values */
int no_of_delays; /* number of delays */
int time_type; /* [vpiScaledRealTime,vpiSimTime,vpiSuppressTime]*/
int mtm_flag; /* true for mtm values */
int append_flag; /* true for append */
int pulsere_flag; /* true for pulsere values */

} s_vpi_delay, *p_vpi_delay;
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/************************** value structures ****************************/
/* vector value */
typedef struct t_vpi_vecval
{

/* following fields are repeated enough times to contain vector */
int aval, bval; /* bit encoding: ab: 00=0,10=1,11=X, O1=Z */

} s_vpi_vecval, *p_vpi_vecval;

/* strength (scalar) value */
typedef struct t_vpi_strengthval
{

int logic; /* vpi [0,1, X, Z] */
int s0, si; /* refer to strength coding below */

} s_vpi_strengthval, *p_vpi_strengthval;

/* strength values */
#define vpiSupplyDrive 0x80
#define vpiStrongDrive 0x40
#define vpiPullDrive 0x20
#define vpiWeakDrive 0x08
#define vpiLargeCharge 0x10
#define vpiMediumCharge 0x04
#define vpiSmallCharge 0x02
#define vpiHiZ 0x01

/* generic value */
typedef struct t_vpi_value
{

int format; /* vpi[[Bin,Oct,Dec,HexJStr,Scalar,Int,Real,String,Vector,
Strength,Suppress,Time,ObjType]Val*/

union
{

char *str;
int scalar;
int integer;
double real;
struct t_vpi_time *time;
struct t_vpi_vecval *vector;
struct t_vpi_strengthval *strength;
char *misc;

} value;
}
s_vpi_value, *p_vpi_value;

/* value formats */
#define vpiBinStrVal 1
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#define vpiOctStrVal 2
#define vpiDecStrVal 3
#define vpiHexStrVal 4
#define vpiScalarVal 5
#define vpiIntVal 6
#define vpiRealVal 7
#define vpiStringVal 8
#define vpiVectorVal 9
#define vpiStrengthVal 10
#define vpiTimeVal 11

/* string value */
/* vpi[0,l,X,Z) */
/* integer value */
/* real value */
/* time value */
/* vector value */
/* strength value */
/*...other */

#define vpiObjTypeVal 12
#define vpiSuppressVal 13

/* delay modes */
#define vpiNoDelay 1
#define vpiInertialDelay 2
#define vpiTransportDelay 3
#define vpiPureTransportDelay 4
/* force and release flags */
#define vpiForceFlag 5
#define vpiReleaseFlag 6
/* scheduled event cancle flag */
#define vpiCancelEvent 7

/* bit mask for the flags argument to vpi_put_value() */
#define vpiReturnEvent 0x1000

/* scalar values */
#define vpi0
#define vpil
#define vpiZ
#define vpiX
#define vpiH
#define vpiL
#define vpiDontCare
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/*
#define vpiNoChange
here.
*/

/********************* system taskfunc structure ************************/

typedef struct t_vpi_systf_data
{

int type; /* vpiSysTask, vpiSysFunc */
int subtype; /* vpiSys(Task, Func(Int,Real,Time,Sized]] */
char *tfname; /* first character must be `$' */
int (*calltf) ();
int (*compiletf) ();
int (*sizetf)(); /* for vpiSysFuncSized callbacks only */
char *user_data;

} s_vpi_systf_data, *p_vpi_systf_data;

#define vpiSysTask 1
#define vpiSysFunc 2
/* the subtypes are defined under the vpiSysFuncType property */
/**************** Verilog execution information structure ***************/
typedef struct t_vpi_vlog_info
{

int argc;
char **argv;
char *product;
char *version;

} s_vpi_vlog_info, *p_vpi_vlog_info;

/**************** PLI error information structure ****************/
typedef struct t_vpi_error_info
{

int state; /* vpi[Compile,PLI,Run] */
int level; /* vpi[Notice,Warning,Error,System,Internal]*/
char *message;
char *product;
char *code;
char *file;
int line;

} s_vpi_error_info,*p_vpi_error_info;
/* error types */
#define vpiCompile 1
#define vpiPLI 2
#define vpiRun 3

#define vpiNotice 1
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#define vpiWarning 2
#define vpiError 3
#define vpiSystem 4
#define vpiInternal 5

/************************ callback structures ****************************/

/* normal callback structure */
typedef struct t_cb_data
{

int reason; /* callback reason */
int (*cb_rtn)(); /* call routine */
vpiHandle obj; /* trigger object */
p_vpi_time *time; /* callback time */
p_vpi_value *value; /* trigger object value */
int index; /* index of the memory word or var select

which changed value */
char *user_data;

} s_cb_data, *p_cb_data;

/* Callback Reasons */
/* Simulation-related */
#define cbValueChange 1
#define cbStmt 2
#define cbForce 3
#define cbRelease 4
/* Time-related */
#define cbAtStartOfSimTime 5
#define cbReadWriteSynch 6
#define cbReadOnlySynch 7
#define cbNextSimTime 8
#define cbAfterDelay 9
/* Action-related */
#define cbEndOfCompile 10
#define cbStartOfSimulation 11
#define cbEndOfSimulation 12
#define cbError 13
#define cbTchkViolation 14
#define cbStartOfSave 15
#define cbEndOfSave 16
#define cbStartOfRestart 17
#define cbEndOfRestart 18
#define cbStartOfReset 19
#define cbEndOfReset 20
#define cbEnterInteractive 21
#define cbExitInteractive 22
#define cbInteractiveScopeChange 23
#define cbUnresolvedSystf 24
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#if defined(_STDC_) || defined( _cplusplus)

#ifndef PROTO_PARAMS
#define PROTO_PARAMS(params) params
#define DEFINED_PROTO_PARAMS
#endif
#ifndef EXTERN
#define EXTERN
#define DEFINED_EXTERN
#endif

#else
#ifndef PROTO_PARAMS
#define PROTO_PARAMS(params) (/* nothing */)
#define DEFINED_PROTO_PARAMS
#endif
#ifndef EXTERN
#define EXTERN extern
#define DEFINED_EXTERN
#endif

/** Following is a list of routines from the VPI procedural interface **/

extern vpi_handle( vpiObjectType otype, vpiHandle object);

extern vpi_handle_multi();

/*** register a system task/function ***/
extern vpi_register_systf();

/** Get information about a system task/function callback **/
extern vpi_get_systf_info();

/*** Obtain a handle by name ***/
extern vpi_handle_by_name(char *name, vpiHandle object);

extern vpi_handle_by_index();
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extern vpi_register_cb();
extern vpi_remove_cb();
extern vpi_get_cb_info();

/**************************************************************/
/*** obtain a logic or strength value of an object ***/
p_vpi_value vpi_get_value(vpiHandle object);
vpi_put_value(vpiHandle object, p_vpi_value value);

/************* write delays or timing limits to an object *******/
vpi_put_delays();

/********** obtain a handle to an object with one to many relationship and then iterate ***/
vpiHandle vpi_iterate(vpiObjectType otype, vpiHandle object);
vpiHandle vpi_scan (vpiHandle object);

/******* miscellaneous vpi routines **************************/
/*** find the current simulation time or the scheduled time for future events **/
vpi_get_time();

/******* write to stdout and the current log file ******/
vpi_printf();

/********** open a file for writing ***************/

vpi_mcd_open();

/********* close one or more files **************/
vpi_mcd_printf();

/************* retrieve the name of the open file *****/

vpi_mcd_name();

/************* retrieve data about product invocation options ***/
vpi_get_vlog_info();

/********** see if two handles refer to the same object ******/
vpi_compare_objects();

vpi_chk_error();
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/**** obtain error status and error information about the previous calls to a VPI routine ****/
vpi_free_object();

/*** Get the values of objects of types integer or boolean **/
int vpi_get();

/************ get the values of objects of string type ****/
char *vpi_get_str();

#endif /* STDC */

/* utility routines */
EXTERN int vpi_compare_objects PROTO_PARAMS((vpiHandle objectl, vpiHandle
object2));
EXTERN int vpi_chk_error PROTO_PARAMS((p_vpi_error_info error_info_p));
EXTERN int vpi_free_object PROTO_PARAMS((vpiHandle object));
EXTERN int vpi_get_vlog_info PROTO_PARAMS((p_vpi_vlog_info vlog_info_p));

#ifdef DEFINED_PROTO_PARAMS
#undef DEFINED_PROTO_PARAMS
#undef PROTO_PARAMS
#endif

#ifdef DEFINED_EXTERN
#undef DEFINED_EXTERN
#undef EXTERN
#endif

/*********************** GLOBAL VARIABLES *******************************/

extern void (*vlog_startup_routines[])(); /* array of function pointers, */
/* last pointer should be null */
#endif /*VPI_USER_H */
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DEFINITION OF SDF

delay_file ::= ( DELAYFILE sdf_header cell {, cell} )

sdf_header ::= sdf_version [design_name][date] [vendor] [program_name] [program_version]
[hierarchy_divider] [voltage] [process] [temperature] [time_scale]

sdf_version ::= ( SDFVERSION QSTRING)

design_name ::= ( DESIGN QSTRING )

date ::= ( DATE QSTRING )

vendor ::= ( VENDOR QSTRING )

program_name ::= ( PROGRAM QSTRING )

program_version ::= ( VERSION QSTRING )

hierarchy_divider ::= ( DIVIDER HCHAR )

HCHAR ::= .// a period character | / // a slash character

voltage ::= ( VOLTAGE rtriple ) | ( VOLTAGE RNUMBER )

process ::= ( PROCESS QSTRING )

temperature ::= ( TEMPERATURE rtriple ) | ( TEMPERATURE RNUMBER )

time_scale ::= ( TIMESCALE TSVALUE )



cell ::= ( CELL celltype cell_instance {timing_spec} )

celltype ::= ( CELLTYPE QSTRING )

cell_instance ::= ( INSTANCE [PATH] )
| ( INSTANCE WILDCARD )

WILDCARD ::= * // the asterisk character

timing_spec ::= del_spec
| tc_sp del_defec | te_spec

del_spec ::= ( DELAY deltype {, deltype})

tc_spec ::= ( TIMINGCHECK tchk_def {, tchk_def} )

te_spec ::= ( TIMINGENV te_def {, te_def} )

deltype ::= ( PATHPULSE [input_output_path] value [value])
| ( PATHPULSEPERCENT [input_output_path] value [value] )
| ( ABSOLUTE deLdef {,del_def})
| ( INCREMENT del_def {, del_def} )

input_output_path ::= {port_instance}

del_def ::= ( IOPATH port_spec port_instance ( RETAIN { delval_list})
|(COND [QSTRING] conditional_port_expr(IOPATH port_spec port_instance( RETAIN {
delvaljist}))
|( CONDELSE (IOPATH port_spec portjnstance (RETAIN {delvaljist}))
| (PORT port_instance delvaljist)
| (INTERCONNECT port_instance portjnstance delvaljist)
| (DEVICE [port_instance] delvaljist)

tchk_def ::= (SETUP port_tchk port_tchk value)
| (HOLD port_tchk port_tchk value) I (SETUPHOLD port_tchk port_tchk rvalue rvalue )
| (SETUPHOLD port_spec port_spec rvalue [rvalue scond] [ccond])
| (RECOVERY port_tchk port_tchk value)
| (REMOVAL port_tchk port_tchk value)
| (RECREM port_tchk port_tchk rvalue rvalue)
| (RECREM port_spec port_spec rvalue rvalue [scond] [ccond])
| (SKEW port_tchk port_tchk rvalue) I (WIDTH port_tchk value)
| (PERIOD port_tchk value) I (NOCHANGE port_tchk port_tchk rvalue rvalue)

port_tchk ::= port_spec I (COND [QSTRING] timing_check_condition port_spec)

scond ::= (SCOND [QSTRING] timing_check_condition)

ccond ::= (CCOND [QSTRING] timing_check_condition)

name ::= (NAME [QSTRING])
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exception::= ( EXCEPTION cell_instance {, cell_instance} )

te_def ::= cns_def | tenv_def

cns_def::= ( PATHCONSTRAINT [name] port_instance {,port_instance} rvalue rvalue)
| ( PERIODCONSTRAINT port_instance value [exception] )
| ( SUM constraint_path constraint_path {, constraint_path} rvalue [rvalue] ) | ( DIFF
constraint_path
constraint_path value [value] )
| ( SKEWCONSTRAINT port_spec value)

tenv_def ::= ( ARRIVAL [port_edge] port_instance rvalue rvalue rvalue rvalue )
| ( DEPARTURE [port_edge] port_instance rvalue rvalue rvalue rvalue )
| ( SLACK port_instance rvalue rvalue rvalue rvalue [NUMBER] )
| ( WAVEFORM port_instance NUMBER edge_list )

constraint_path ::= ( port_instance port_instance )

port_spec ::= port_instance | port_edge

port_edge ::= ( EDGE_IDENTIFIER port_instance )

EDGE_IDENTIFIER ::= posedge | negedge | 01 |10 | 0z | z1 | 1z | z0

port_instance ::= port | PATH HCHAR port

port ::= scalar_port | bus_port

scalar_port ::= IDENTIFIER | IDENTIFIER [ DNUMBER ]

bus_port ::= IDENTIFIER [ DNUMBER : DNUMBER ]

edge_list ::= pos_pair {, pos_pair} | neg_pair {, neg_pair}

pos_pair ::= ( posedge RNUMBER [RNUMBER]) ( negedge RNUMBER [RNUMBER] )

neg_pair ::= ( negedge RNUMBER [RNUMBER]) ( posedge RNUMBER [RNUMBER] )

value ::= ( [NUMBER] ) | ( [triple] )

triple ::= NUMBER : [NUMBER] : [NUMBER] | [NUMBER] : NUMBER : [NUMBER]
| [NUMBER]: [NUMBER] : NUMBER

rvalue ::= ( [RNUMBER] ) | ( [rtriple] )

rtriple ::= RNUMBER :[RNUMBER]:[RNUMBER]
| [RNUMBER]: RNUMBER [:RNUMBER]
| [RNUMBER]: [RNUMBER]: RNUMBER
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Apart from allowing negative numbers (RNUMBER instead of
NUMBER), rvalue and rtriple are essentially the same as value and
triple.

delval ::= rvalue | ( rvalue rvalue ) | ( rvalue rvalue rvalue )

delval_list ::= delval | delval
delval | delval delval delval | delval delval delval delval [[delval]
delval] | delval delval delval delval delval delval delval [[delval]
delval] [delval] [delval] [delval]
conditional_port_expr ::= simple_expression
| ( conditional_port_expr )
| UNARY_OPERATOR ( conditional_port_expr )
| conditional_port_expr BINARY_OPERATOR conditional_port_expr

simple_expression ::= ( simple_expression )
| UNARY_OPERATOR ( simple_expression ) | port | UNARY_OPERATOR
port | SCALAR_CONSTANT | UNARY_OPERATOR SCALAR_CONSTANT |
simple_expression
QM simple_expression CLN simple_expression | { [simple_expression
concat_expression] } | { simple_expression { simple_expression [concat_expression]
}}

concat_expression ::=, simple_expression

QM ::= ? // a literal question mark

CLN ::=:// a literal colon

Timing check conditional expressions are defined as follows:

timing_check_condition ::= scalar_node
| INVERSION_OPERATOR scalar_node
| scalar_node EQUALITY_OPERATOR SCALAR_CONSTANT

scalar_node ::= scalar_port scalar_net

scalar_net ::= IDENTIFIER

SCALAR_CONSTANT
::= 1`b0//logical zero
| 1`bl //logicalone
| 1` B0//logical zero
| 1`B1 // logical one
|`b0// logical zero
|`bl // logicalone
| ̀ B0 // logical zero
|`B1 // logical one
| 0 // logical zero



FORMAL SYNTAX DEFINITION OF SDF  449

UNARY_OPERATOR ::= +//arithmetic identity
| - // arithmetic negation
| ! // logical negation | ~ // bit-wise unary negation | & // reduction unary
AND | ~& // reduction unary NAND | | // reduction unary OR |
~| // reduction unary NOR | ^ // reduction unary XOR | ^~ // reduction
unary XNOR | ~^ // reduction unary XNOR (alternative)

INVERSION_OPERATOR
::= ! // logical negation | ~ // bit-wise unary negation

BINARY_OPERATOR
::= + // arithmetic sum | - // arithmetic difference | * // arithmetic
product | / // arithmetic quotient | % // modulus | == // logical
equality | != // logical inequality | === // case
equality |
!== // case inequality | && // logical AND | || // logical OR
| < // relational | <= // relational | > // relational | >=
// relational | & // bit-wise binary AND | | // bit-wise binary
inclusive OR | ^ // bit-wise binary exclusive OR | ^~ // bit-wise
binary equivalence | ~^ // bit-wise binary equivalence (alternative)
| >>// right shift | << // left shift

EQUALITY_OPERATOR ::=
== // logical equality | != // logical inequality | === // case
equality | !== // case inequality

| 1 // logical one
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